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Abstract. We develop an algorithm that computes the Reidemeister Torsion of the geometric
realization of a simplicial set X with respect to a provided representation of X’s fundamental

group.

The SageMath implementation of our algorithm enabled us to automatically compute the
Reidemeister Torsions of the Poincaré Homology 3-Sphere with respect to all irreducible rep-

resentations of its fundamental group.
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1. Introduction

Reidemeister torsion is a homeomorphisms invariant of compact simplicial complexes or, more
generally, CW-complexes with finitely many cells. An important application of Reidemeister
torsion is to distinguish homotopy equivalent spaces which are not homeomorphic. For exactly
that purpose Kurt Reidemeister introduced Reidemeister torsion in his 1938 paper [Rei35], where
he classified 3-dimensional lens spaces. Reidemeister torsion has been extensively studied since.
As explained in [Tur01] and [Coh12], Reidemeister torsion is closely linked to Whitehead torsion,
which classifies simple homotopy types. Further, Reidemeister torsion has applications in knot
theory, see [Mil62], [Tur01] and [Mil66]. Moreover, the equality of Reidemeister torsion and
analytic torsion, proven by Cheeger in [Che77], makes Reidemeister torsion a relevant tool for
studying compact Riemannian manifolds. Somewhat surprisingly, the author’s are not aware of
any other publication or implementation of an algorithm computing Reidemeister torsions.

For a compact CW-complex X and a complex representation ρ : π1(X) → GL(Cn) of its
fundamental group, the Reidemeister torsion τ(X, ρ) is represented by a complex number. Our
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algorithm enables researchers to compute this number even if the size of X or π1(X) is too large
to do that by hand. For example, the Poincaré homology 3-sphere is a 3-dimensional manifold
whose fundamental group, the binary icosahedral group, has order 120 and consists of 9 conjugacy
classes. Further, the smallest known simplicial-complex-triangulation of the Poincaré homology
3-sphere, as presented in [BL00], uses 392 simplices. While a by hand computations seems
unrealistic, with our algorithm the Reidemeister torsions of the Poincaré homology 3-sphere can
be computed automatically, both numerically, as well as, symbolically.

In order to create an implementable algorithm, we had to agree on a data structure that
encodes the input space X from which the user wants to compute the Reidemeister torsion of.
We decided that the input space X should be given as a simplicial set with finitely many non-
degenerate simplices, so that our algorithm also works for simplicial and ∆-complexes that have
finitely many simplices. Moreover, the triangulation as a simplicial set often gets by with fewer
simplices, as with ∆- or simplicial complexes. Further, in the category of simplicial sets it is
more convenient for us to construct spaces X, as it admits more morphisms then the category
of ∆-complexes.

1.1. Our Contribution. Recently, the authors of the Paper [MBRD23] implemented the con-
struction of the universal cover in the SageMath programming language [The23] for connected
simplicial sets X with finitely many nondegenerate simplices, provided that the fundamental
group π of the simplicial set X is finite and that we can solve the word problem in that particu-
lar case. In the case of an infinite fundamental group, the cellular chain complex of the universal
cover can still be constructed, namely, as a chain complex of free modules over the integral group
ring Z[π]. Readers can find an algorithmic solution to this in Section 4 of [EK21], and an alter-
native description of the algorithm, better suited to the data structures in the current paper, is
also provided, here, in Section 3.

Our main contributions, see section 4, is the design of algorithms for symbolic and numerical
computation of combinatorial torsion of chain complexes over fields.

Combining these efforts results in an algorithm for calculating Reidemeister torsion. A Sage-
Math implementation of the algorithms introduced in this paper is available here.

1.2. Acknowledgments. This project summarizes the content of my bachelor thesis. The thesis
was supervised by Ulrich Bauer and Nico Stucki. All results were achieved with their help and
consultations.

2. Preliminaries

2.1. Definition of Reidemeister Torsion. The goal of this subsection is to recall the definition
of Reidemeister torsion. But we will also hint on an outline for the structure of our algorithm.
The notation introduced in this paragraph will be used throughout the paper.

We put ourselves in the following situation: We are given a simplicial set X that has finitely
many non-degenerate simplices. The geometric realization of X as a CW-complex is the space
from which we want to compute the Reidemeister torsion of. For that purpose we assume that
X is connected and that we are given a representation ρ : π → GL(Cn) of the fundamental group
π of the geometric realization |X| of X at some base-point. We assume that the base-point is
the geometric realization of some vertex x0 ∈ X0 of X. Further, we view GL(Cn) as the group
of units of the ring Matn×n(C) of n × n matrices with complex coefficients, so that ρ(g) is a
invertible matrix for all g ∈ π.

Recall that the universal cover X̃ is defined as a simplicial set X̃ together with a morphism of
simplicial sets p : X̃ → X, such that the geometric realization of the morphism p is a universal
covering projection of topological spaces. The existence of X̃ is justified by Theorem 2.1.1.

https://github.com/fNeugebauer/Computation-of-Combinatorial-Torsion
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To compute the Reidemeister torsion τ(X, ρ) of X with respect to the representation ρ our
first step will be

1) Computing the normalized chain complex C(X̃) of the universal cover X̃ of X. (This
will be discussed in section 3.)

The normalized chain complex of a simplicial set is defined in [Lur23, Construction 00QH] and
agrees with the cellular chain complex of the geometric realization of the simplicial set as CW-
complex. We will now explain how the normalized chain complex C(X̃) of X̃ with coefficients in
Z admits a left Z[π]-module structure, where Z[π] is the integral group ring over the fundamental
group π of X:
For that purpose we choose a vertex x̃0 ∈ X̃0 of the universal cover, which lies in the fiber of x0.
Recall that a deck-transformation is a morphism of simplicial sets ϕ : X̃ → X̃ satisfying pϕ = p.
Very importantly, it doesn’t matter in that definition if we interchange the category of simplicial
sets with the category of topological spaces in the following sense:

Theorem 2.1.1. [GZ12, Append. I] Let Cov(X) denote the full subcategory of the slice category
of simplicial sets over X, consisting of morphisms of simplicial sets q : R→ X, whose geometric
realization is a covering projection of topological spaces. Let Cov(|X|) denote the full subcategory
of the slice category of topological spaces over |X|, consisting of covering projections. Then,
geometric realization induces an equivalence of categories Cov(X) → Cov(|X|).

Let g ∈ π. For every loop γ ∈ g there is a unique path γ̃ in the geometric realization of X̃
that lifts γ and starts at x̃0. The endpoint of γ̃, constructed with that recipe, is the same for
all γ ∈ g. Moreover, there is a unique deck-transformation ϕg that sends x̃0 to the endpoint of
γ̃. Using Theorem 2.1.1 to translate to the category of simplicial sets, these facts are proven in
[Hat02, Sec.1.3] together with the following proposition:

Proposition 2.1.2. [Hat02, Prop. 1.39] The assignment g 7→ ϕg is a group-isomorphism from

π to the subgroup of the automorphism group of X̃ that consists of deck-transformations.

A left Z[π]-module structure on C(X̃) is given by Z-linearly extending the operation g · σ̃ =

ϕg(σ̃) that is initially given for g ∈ π1 and simplices σ̃ of X̃. Because the ϕg are morphisms of

simplicial sets, the boundary operators of C(X̃) are Z[π]-linear. The next lemma will be used

to give C(X̃) even more structure: Every chain group of C(X̃) will be equipped with a finite
Z[π]-module basis.

Lemma 2.1.3. Let k ≥ 0 and let σ̃(k), τ̃ (k) ∈ X̃k be two k-dimensional simplices of the universal
cover of X, which lift the same simplex under the covering projection p, i.e. p(σ̃(k)) = p(τ̃ (k)).
Then there exists a unique deck-transformation ϕg such that τ̃ (k) = ϕg(σ̃

(k)).

Proof. By [Hat02, Sec. 1.3] the action of π on the fiber p−1(y0) via g · ỹ0 = ϕg(ỹ0) is transitive
and free for all vertices y0 of X. So the lemma will be implied by the following theorem, which
we cite. □

Theorem 2.1.4. [GZ12, Append. I] Let p : Z → X be a morphism of simplicial sets. The
following are equivalent:

a) The geometric realization of the morphism p is a covering projection |p| : |Z| → |X| of
topological spaces.

b) For any simplex σ of X and vertex w of Z such that p(w) is the ith-vertex of σ for some
i, there is a unique simplex σ̃ of Z with p(σ̃) = σ such that the i-th vertex of σ̃ equals w.

https://kerodon.net/tag/00QH
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Construction 2.1.5. For any k ≥ 0 and any k-dimensional simplex σ(k) of X choose a fixed
simplex σ̃(k) of the universal cover X̃, such that σ̃(k) lifts σ(k), i.e. p(σ̃(k)) = σ(k). By Lemma
2.1.3

{σ̃(k) : σ(k) is a nondegenerate k-simplex of X}
constitutes a left Z[π]-module basis of the kth chain group Ck(X̃) of the normalized chain complex

C(X̃).

Concretely, step 1) of computing the Reidemeister torsion τ(X, ρ) is to compute the matrices

of the boundary operators of C(X̃) with respect to Z[π]-bases, which are constructed as in 2.1.5.1

The second step will be

2) Changing the coefficients from Z[π] to C to bring Reidemeister torsion in the realm of
computability.

For that purpose, we make Cn a right Z[π]-module by Z-linearly extending the left-action of π

on Cn via v · g = ρ(g)−1v. This allows us to define the twist complex C(X, ρ) := Cn ⊗Z[π] C(X̃),
which we view as a chain-complex of C-vector spaces.

Definition 2.1.6. A based chain-complex C is a chain complex of finite dimensional vector
spaces over a field F together with a fixed vector space basis of every chain group of the vector
space. We refer to these bases as the distinguished bases. Further, we assume that there exists
some d ∈ N such that Ck = 0 for k /∈ {0, 1, . . . , d}.

We can promote the twist complex C(X, ρ) to a based chain-complex by using a Z[π]-basis of
C(X̃) as constructed in 2.1.5:

If {b(k)i } is a module basis of the left Z[π]-module Ck(X̃) and e1, . . . , en is the standard basis of

Cn, then {es ⊗ b
(k)
i }i,s constitutes a C-vector space basis of

Ck(X, ρ) = Cn ⊗Z[π] Ck(X̃).

To prove this, recall that tensor products commute with direct sums and that, for any right Z[π]-
module M , the module M ⊗Z[π] Z[π] is canonically isomorphic to M . Then use these canonical
isomorphisms to write Ck(X, ρ) as a direct sum of Cn’s.

Convention 2.1.7. We will refer to the basis {es ⊗ b
(k)
i }i,s as the tensor product basis obtained

from the basis {b(k)i } and the standard basis of Cn.

The last step of computing the Reidemeister torsion τ(X, ρ) of X with respect to the repre-
sentation ρ is

3) Computing the combinatorial torsion of the twist complex C(X, ρ).

The combinatorial torsion τ of a based chain complex C over a field F is defined as follows: If

C is not exact, τ is defined to be 0 ∈ F. Otherwise, let {c(k)i }1≤i≤mk
be the distinguished basis

of Ck for 0 ≤ k ≤ d and we assumed Ck = 0 for all other k. For all 0 < k ≤ d + 1 we choose a

basis {a(k−1)
j }1≤j≤rk of im(∂k) ⊆ Ck−1, where rk ∈ N0. For every 0 < k ≤ d the sequence

0 → im(∂k+1) → Ck
∂k−→ im(∂k) → 0 (1)

1Note that if the matrix M(k) represent ∂k : Ck(X̃) → Ck−1(X̃) then, because we work with left-modules, the

(i, j)− th entry of the matrix representing the composition ∂k ◦ ∂k+1 is
∑

m M
(k+1)
m,j M

(k)
i,m not

∑
m M

(k)
i,mM

(k+1)
m,j .
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is split exact, so there exists a set of vectors {a(k)i+rk+1
}1≤i≤rk in Ck such that ∂ka

(k)
i+rk+1

= a
(k−1)
i

for 1 ≤ i ≤ rk and such that {a(k)i }1≤i≤mk
is a basis of Ck. We denote by B(k) ∈ Matmk,mk

(F)
the base-change matrix, i.e. a

(k)
j =

∑mk

i=1B
(k)
i,j c

(k)
i for all 1 ≤ j ≤ mk. The combinatorial torsion

of the based chain complex C is defined as

τ(C) :=

d∏
k=0

det(B(k))(−1)k ∈ F∗.

It is proven in [Tur01, Chap. 1, 1] that τ(C) is independent of the choices involved in the

construction of the a
(k)
i ’s. We present algorithms that compute the combinatorial torsion of

based chain complexes in section 4.

Definition 2.1.8. The Reidemeister torsion τ(X, ρ) of X with respect to the representation
ρ : π → Gl(Cn) is defined as 0 ∈ C if the twist complex C(X, ρ) is not exact and

τ(X, ρ) := τ(C(X, ρ)) ∈ C∗/± {det(ρ(g)) : g ∈ π}, (2)

else. Here Ck(X, ρ) is based by the tensor product basis obtained from a basis as chosen in 2.1.5
and the standard basis of Cn.

Why is the Reidemeister torsion well-defined in Equation 2? Because choosing a different
basis of C(X̃) in Construction 2.1.5 will have the same result as multiplying the torsion of the
twist complex C(X, ρ) by det(ρ(g)) for some g ∈ π. Interchanging the order of such a basis, can
only possibly change the sign of τ(C(X, ρ)).

2.2. Encoding Simplicial Sets. The following data structure encoding simplicial sets is im-
plemented in SageMath [The23, The Sage Developers]. We give a short review in preparation
for the next section.

A simplicial set X is encoded by the set of its nondegenerate simplices {σ(k)
j }j,k, where we

impose the condition on X that this set is finite. For every nondegenerate k-simplex σ
(k)
j ∈ Xk

of the simplicial set X the following data is stored:

(1) Its dimension k ∈ N0.
(2) The list of its (k + 1)-faces.

A face of σ
(k)
j is specified in this data structure by a nondegenerate simplex σ

(λ)
j of X together

with integers k − 1 ≥ i1 > i2 > · · · > iζ ≥ 0, where ζ = k − 1− λ.

The corresponding face of σ
(k)
j is then the (k − 1)-simplex of X given by

si1 ◦ si2 ◦ · · · ◦ siζ (σ
(λ)
j ). (3)

Recall that the ith-degeneracy map of the simplicial set X is denoted by si. By [Lur23,
Proposition 0014] every (k−1)-dimensional simplex of X can uniquely be written as in Equation
3, where we used the simplicial identity

sisj = sj+1si if , i ≤ j, (4)

to ensure i1 > i2 > · · · > iζ .

3. Computing the Twisted Chain Complex of the Universal Cover

First, we need to specify how we handle the fundamental group π of the geometric realization
|X| of X at some base-point. For that purpose we choose/compute, once and for all, a spanning
tree Γ of the undirected multi-graph determined by the 1-skeleton of X. Note that the 1-skeleton
ofX can be viewed as a connected graph by [Lur23, Subsection 00G5]. Let ϵ1, . . . , ϵν ∈ X1 denote
the nondegenerate 1-simplices of X, which are not contained in the edges of the spanning tree

https://kerodon.net/tag/0014
https://kerodon.net/tag/00G5
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Γ. Let us also choose, once and for all, a base-point for the fundamental group. We let x0 ∈ X0

be a vertex and set the base-point of the fundamental group π to be its geometric realization
|x0| ∈ |X|. For every ϵµ we choose a loop γµ in |X| based at |x0|, which is contained in |Γ| ∪ |ϵµ|
and traverses |ϵµ| exactly once and from |ϵµ(0)| to |ϵµ(1)|. Here |Γ| ⊆ |X| denotes the geometric
realization of the spanning tree Γ and ϵµ(i) is the i

th-vertex of the edge ϵµ ∈ X1.

Proposition 3.0.1 (Presentation of the fundamental group). [Lee10, Chap. 10] The map from
the free group F (ϵ1, . . . , ϵν) on {ϵ1, . . . , ϵν} to π induced by ϵµ 7→ [γµ] is surjective with kernel
the normal closure of{

z0 · z−1
1 · z2

∣∣∣∣ σ a nondegenerate 2-simplex of X and zi = di(σ)
when di(σ) ∈ {ε1, . . . , εν} and zi = 1 else.

}
Proposition 3.0.1 enables us to compute a group presentation of π that will be used to resemble

π on the computer.
Once we specified one initial lift ṽ of every vertex v of X to X̃, we can find one normalized

lift of every higher simplex σ of X, namely the unique lift of σ with 0th vertex being in the set of
initial lifts of vertices of X. Relative to these normalized lifts the structure of X̃ will be encoded.
We construct the initial lifts of the vertices in a way that works well with the chosen spanning
tree Γ.

Construction 3.0.2 (Initial lifts for the vertices of X). We construct a set function X0 →
X̃0, v 7→ ṽ with the following three properties:

a) Lifts with respect to p: For all vertices y0 ∈ X0 of X the vertex ỹ ∈ X̃0 lies in the fiber
p−1(y0).

b) Base-point preserving: x̃0 is the lift of the base-point x0 which is used in proposition
2.1.2 to construct the group-isomorphism from π to the group of deck-transformation.

c) Induced lift of the spanning tree: Let σ(1) ∈ X1 be a nondegenerate edge of X, which
is contained in the edges of Γ. Let v ∈ X0 be the 0th-vertex of σ(1) and let w ∈ X0 be
the 1st-vertex of σ(1). By Theorem 2.1.4 there is a unique edge σ̃(1) ∈ X̃1 of X̃ that lifts
σ(1) and has 0th vertex ṽ. We require for the constructed function X0 → X̃0 that σ̃(1)

has 1st-vertex equal to w̃.

Let us consider the geometric realization of the inclusion of Γ into X, which is a continuous map
ι : |Γ| → |X| from a simply-connected space |Γ| into |X|. By the lifting criterion [Hat02, Prop.

1.33], there exists a (unique) continuous map ι̃ : |Γ| → |X̃| with |p| ◦ ι̃ = ι and ι̃(|x0|) = |x̃0|.
We define a function X0 → X̃0 by sending any vertex y0 of X to the unique vertex ỹ0 ∈ X̃0,
which satisfies ι̃(|y0|) = |ỹ0|. This set-function X0 → X̃0 satisfies conditions a) and b) because ι̃

does. Let σ(1) ∈ X1 be as in condition c). Then |σ̃(1)| equals ι̃(|σ(1)|) as map |∆1| → X̃ by the
unique lifting criterion [Hat02, Prop. 1.34]. In particular, the point ι̃(|w|) equals the geometric
realization of the 1st-vertex of σ̃(1). Hence, by the definition of w 7→ w̃, the vertex w̃ equals the
1st-vertex of σ̃(1).

Convention 3.0.3 (Normalized lifts of the simplices of X). From now on, let X0 → X̃0, v 7→ ṽ
be as constructed in Construction 3.0.2. For every k-dimension simplex σ(k) of X, let σ̃(k) denote
the unique simplex of X̃ having the following two properties: If σ(k) has 0th-vertex y0 then σ̃(k)

has 0th-vertex ỹ0 and, secondly, p(σ̃(k)) = σ(k). Existence and uniqueness of σ̃(k) follows from
theorem 2.1.4.

For all k ≥ 0, the set of normalized lifts

{σ̃(k) : σ(k) is a nondegenerate k-simplex of X} (5)
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is exactly as constructed in 2.1.5 and therefore constitutes a left Z[π]-module basis of the kth chain

group Ck(X̃) of the normalized chain complex of the universal cover. The following proposition
allows us to construct the matrices M (1), . . . ,M (dim(X)) with coefficients in Z[π], such that M (k)

represents the boundary operator ∂ : Ck(X̃) → Ck−1(X̃) with respect to these bases.

Proposition 3.0.4 (The attaching maps of the universal cover). Let σ(k) be a k-simplex of X
for k ≥ 1 and let σ(k−1) := di(σ

(k)) for some i = 0, . . . , k. If i > 0, then the equation

di(σ̃
(k)) = σ̃(k−1) (6)

holds in X̃.
Now let us consider the case i = 0, i.e. σ(k−1) = d0σ

(k). Let σ(1) ∈ X1 be the edge of σ(k) that
connects the 0th-vertex v of σ(k) to the 1st-vertex w of σ(k).

a) If σ(1) is degenerate or contained in the edges of the spanning tree Γ, then the equation

d0(σ̃
(k)) = σ̃(k−1) holds in X̃. (7)

b) If σ(1) equals one of the edges ϵµ not contained in the spanning tree Γ, then

d0(σ̃
(k)) = ϕg(σ̃

(k−1)), (8)

for g := [γµ] ∈ π defined as before Proposition 3.0.1 and ϕg being the deck-transformation
corresponding to g under the isomorphism in Proposition 2.1.2.

Proof. As our normalized lifts σ̃(k) are specified by their 0th vertex being the initial lift and the
di’s preserve 0th vertices for i > 0, equation 6 follows. Comparing 0th vertices, theorem 2.1.4
implies

d0(σ̃
(k)) = ϕ(σ̃(k−1)) for ϕ the unique deck-transformation with d0σ̃

(1) = ϕ(w̃). (9)

a) Recall that the deck-transformation ϕ is determined by its free action on the fiber of w.
Thus, if σ(1) is degenerate or contained in the edges of the spanning tree Γ, then ϕ must
be the identity, where in the latter case we employ Property c) in Construction 3.0.2.

b) Let us assume that σ(1) equals one of the nondegenerate edges ϵµ of X, which are not
contained in the spanning tree Γ.
Let W = (e1, . . . , es−1) be the unique simple path in Γ from x0 to v. We denote the
corresponding sequence of vertices by (v1 = x0, v2, . . . , vs = v). By Condition 3.0.2 c) in

the construction of the initial lifts X0 → X̃0, the sequence of vertices corresponding to
the walk W̃ := (ẽ1, ẽ2, . . . , ẽs−1) in the graph determined by the 1-skeleton of X̃ is given
by (ṽ1, ṽ2, . . . , ṽs). We can build a continuous path

γ̃1 := |ẽ1|±1 · |ẽ2|±1 · · · · · |ẽs−1|±1 : [0, 1] → |X̃|
by concatenating the geometric realizations of the ẽi’s, where we choose the direction to
traverse |ẽi| according to the direction of the simple path W̃ from x̃0 to ṽ. Here, by raising
a path to the (·)−1 we will mean that we traverse the path in inverse direction. When
s = 1, we define γ̃1 to be constant path at |x̃0|. Clearly, the following two properties
hold:
(i) The continuous path γ1 := |p| ◦ γ̃1 : [0, 1] → |X| has starting point γ1(0) = |x0|

and endpoint γ1(1) = |v|. Further, the image of γ1 is contained in the geometric
realization |Γ| of the tree Γ.

(ii) The path γ̃1 has starting point γ̃1(0) = |x̃0| and endpoint the geometric realization
of ṽ.

By exactly the same argument, there exists a continuous path γ̃2 : [0, 1] → |X̃| such that
the following two properties hold:
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(i) The continuous path γ2 := |p| ◦ γ̃2 : [0, 1] → |X| has starting point γ2(0) = |x0|
and endpoint γ2(1) = |w|. Further, the image of γ2 is contained in the geometric
realization |Γ| of the tree Γ.

(ii) The path γ̃2 has starting point γ̃2(0) = |x̃0| and endpoint the geometric realization
of w̃.

Recall that ϕ : X̃ → X̃ is the unique deck-transformation that sends w̃ to the 1st-vertex of
σ(1). Because the endpoint of γ̃2 equals the geometric realization of w̃, the concatenation

γ̃ := γ̃1 · |σ̃(1)| · (|ϕ| ◦ γ̃−1
2 ) : [0, 1] → X̃

defines a continuous path, where by γ̃−1
2 the path that traverses γ̃2 backwards is meant.

By definition of γ̃, we have γ̃(0) = γ̃1(0) = |x̃0| and γ̃(1) = ϕ(γ̃2(0)) = ϕ(|x̃0|). So, the
deck-transformation ϕ corresponds to [|p| ◦ γ̃] ∈ π under the isomorphism in Proposition
2.1.2. The elements [|p| ◦ γ̃] and [γµ] are equal in the fundamental group π, because both
|p|◦ γ̃ and γµ are loops in |X| based at |x0|, which are contained in |Γ|∪|ϵµ| and traverses
|ϵµ| exactly once and from |ϵµ(0)| to |ϵµ(1)|. In summary, the deck-transformations ϕg
and ϕ agree and therefore the equation d0(σ̃

(k)) = ϕ(σ̃(k−1)) = ϕg(σ̃
(k−1))follows by the

already proven claim in 9. □

We now want to adapt the previous result in Equation 8 more to the data structure introduced
in Section 2.2.

Corollary 3.0.5. Let k ≥ 2 and σ(k) ∈ Xk be a k-simplex of X. Let σ(k−1) := d0σ
(k) denote

σ(k)’s 0th-face. Let τ (λ) be a nondegenerate simplex of X and let i1 > i2 > · · · > iζ ≥ 0 be
integers such that

dk(σ
(k)) = si1 ◦ si2 ◦ · · · ◦ siζ (σ(λ)).

Let ϕ be the unique deck-transformation such that d0(σ̃
(λ)) = ϕ(σ̃(λ−1)), where σ(λ−1) := d0(σ

(λ))
denotes the 0th-face of σ(λ). Then

d0(σ̃
(k)) =

{
σ̃(k−1), if dk(σ

(k)) is degenerate and iζ = 0,

ϕ(σ̃(k−1)), else.
(10)

Proof. Let σ(1) ∈ X1 denote the edge of σ(k) that connects the 0th-vertex of σ(k) to the 1st-vertex
of σ(k). If dk(σ

(k)) is degenerate and iζ = 0, then σ(1) is degenerate, too, and the result follows

from Proposition 3.0.4 a). Otherwise, σ(1) is the edge of σ(λ) that connects the 0th-vertex of σ(λ)

to the 1th-vertex of σ(λ). So, the result follows from first applying Proposition 3.0.4 to σ(λ) and
then to σ(k). □

We now explain how we can derive algorithms from Proposition 3.0.4 that calculate the chain
complex of the universal cover, the twist complex and the Reidemeister torsion, respectively.
For that purpose we assume that a connected simplicial set X with finitely many nondegenerate
simplices is given via the data structure explained in Section 2.2. Further, for the latter two
algorithms, we assume that we are given a representation ρ : π → GL(Cn) of the fundamental
group π of X. For the time being, we take for granted that ρ is an oracle that takes a loop
γ : [0, 1] → |X| based at |x0| and returns the n × n-matrix ρ([γ]). Here |x0| ∈ |X| is the
geometric realization of a vertex of X that we use as base point of the fundamental group π.

We start our algorithm by computing a spanning tree Γ of the undirected multigraph deter-
mined by the 1-skeleton of X. For a nondegenerate 1-simplex σ(1) ∈ X we can read off from
Proposition 3.0.4 a representation of ∂σ(1) ∈ C0(X̃) in terms of the Z[π]-basis of C(X̃), which
we constructed in 5, i.e. we are able to construct the matrix M (1) with coefficients in Z[π] that
represent the boundary operator ∂ : C1(X̃) → C0(X̃) with respect to the bases defined in 5.
Further, we will initialize a dictionary D with keys being all nondegenerate simplices of X. We
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start by filling in values of D. For any nondegenerate 1-simplex σ(1) of X we set the value D[σ(1)]
to be the unique deck-transformation ϕ such that d0(σ̃

(1)) = ϕ(w̃) for w being the 1th-vertex of
σ(1).
By induction on k ≥ 1, we assume we have filled the dictionary D for all λ < k with the following
values. The value D[σ(λ)] in D corresponding to a nondegenerate simplex σ(λ) of X is the unique
deck-transformation ϕ such that d0(σ̃

(λ)) = ϕ(σ̃(λ−1)), where σ(λ−1) is the 0th-face of σ(λ). Us-
ing the case distinction in Equation 10 we can extend the values of D for all nondegenerate
k-simplices of X, invoking the induction hypothesis.

For any nondegenerate k-simplex σ(k) we can read off a representation of ∂(σ̃(k)) in terms

of our Z[π]-basis of Ck−1(X̃) from the completely filled dictionary D and Equation 6. This
approach allows us to construct the matrices M (1), . . . ,M (dim(X)) with coefficients in Z[π], such
that M (k) represents the boundary operator ∂ : Ck(X̃) → Ck−1(X̃) with respect to the bases
defined in 5. This describes the algorithm computing the cellular chain complex of the universal
cover.

We choose an in situ approach to obtain the twist complex. Recall that the distinguished basis
of the twist complex C(X, ρ) consists of the tensor product basis obtained from the basis in 5
and the standard basis of Cn (see Definition 2.1.6 and Convention 3.0.3 for this terminology). To
construct the matrices C(1), . . . , C(dim(X)) with coefficients in C, such that C(k) represents the
boundary operator Ck(X, ρ) → Ck−1(X, ρ) of the twist-complex with respect to the distinguished
bases, we may use the following lemma.

Lemma 3.0.6. By Z-linearly extending the assignment π → GL(Cn), g 7→ ρ(g)−1 we obtain a
Z-linear map ρ̃ : Z[π] → Matn×n(C). For k = 1, . . . ,dim(X) the matrix C(k) is a block-matrix,
where the (i, j)-th submatrix of C(k) is the n× n-matrix obtained by applying ρ̃ to the (i, j)-th
entry of M (k).

Proof. This is a reformulation of the fact that the Kronecker product of matrices gives the tensor
product linear map with respect to a standard choice of basis. For the sake of completeness we

give an algebraic derivation. If {σ(k)
j }j , {σ(k−1)

i }i is the list of nondegenerate k- and (k − 1)-

simplices of X, respectively, and e1, . . . , en is the standard basis of Cn, then {es ⊗ σ̃
(k)
j }j,s

and {et ⊗ σ̃
(k)
i }i,t is the distinguished basis of the kth and (k − 1)th chain group of the twist-

complex C(X, ρ), respectively. We can read off the coefficients of the matrix C(k) representing
the boundary operator ∂ : Ck(X, ρ) → Ck−1(X, ρ) with respect to the distinguished bases from
the following Equation:

∂(es ⊗ σ̃
(k)
j ) = es ⊗ ∂(σ̃

(k)
j ) = es ⊗

(∑
i

M
(k)
i,j σ̃

(k−1)
i

)
=
∑
i

es ⊗
(
M

(k)
i,j σ̃

(k−1)
i

)
=
∑
i

(
ρ̃
(
M

(k)
i,j

)
es

)
⊗ σ̃

(k−1)
i =

∑
i

(
n∑

t=1

ρ̃
(
M

(k)
i,j

)
t,s
et

)
⊗ σ̃

(k−1)
i

=
∑
i

n∑
t=1

ρ̃
(
M

(k)
i,j

)
t,s
et ⊗ σ̃

(k−1)
i .

□

Instead of first constructing the matrix M (k) and then applying ρ̃ coefficient-wise, we do this
procedure in-place. Already when we construct M (k) and when we fill the dictionary D, we
will replace any deck-transformation ϕg by the matrix ρ(g)−1. This yields the desired algorithm
computing the matrices of the twist complex C(X, ρ).
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The Reidemeister Torsion is then obtained by applying a function that computes the combi-
natorial torsion of the twist-complex from the matrices C(1), . . . , C(dim(X)). Algorithms capable
of this task will be introduced in Section 4.

Remark 3.0.7. We discuss two ways to implement the representation ρ : π → Gl(Cn). One
possibility is that the user computes a spanning tree Γ of the 1-skeleton of X and provides the
representation ρ by specifying the matrix ρ([γµ]) for every edge ϵµ ∈ X1 which is not contained
in Γ. Recall that we defined the path γµ in the paragraph before Proposition 3.0.1.

Our second way of implementing the representation ρ tries to automate the whole process so
that only the simplicial set X needs to be provided. If the fundamental group of X happens
to be a finite group, then the Reidemeister torsion of X with respect to any representation
ρ of π does only depend on the Reidemeister torsion’s of X with respect to the irreducible
subrepresentations of ρ. In that case, we use Proposition 3.0.1 to compute a presentation of π.
We then ask a computer algebra system, such as GAP, to compute all irreducible representations
of this presentation of π. The computer algebra system will provide the matrices ρ(ϵµ) for
every edge ϵµ ∈ X1 \ Γ and irreducible representation ρ. We then run our algorithm for the
Reidemeister torsion of X for every such irreducible representation ρ, merely substituting ρ(ϵµ)
for the expression ρ([γµ]) in line 8 of Algorithm 1.

4. Algorithms for Torsion of Chain Complexes

In the context of Reidemeister torsion we might be interested in a representation ρ : π →
GL(Cn), which assign matrices with entries in some algebraic number field. In that case, we
might want to implement an algorithm that computes symbolically and gives an exact result
in terms of a rational function in the generators of the number field. On the other hand, we
could be interested in a numerical result using floating point numbers, as this approach promises
faster computations. We will present separate algorithms for each of these tasks. The symbolic
calculations will be based on Gaussian elimination. This algorithm will turn out to be numerically
unstable and we will do singular value decomposition instead, when constructing a numerical
algorithm.

Convention 4.0.1. In this section, C is a based chain complex over a field F defined as in
Definition 2.1.6. For k = 1, . . . , d, we denote the matrix that represents the boundary operator
∂k : Ck → Ck−1 by C(k) or C[k]. Further, we denote the distinguished basis of Ck for 0 ≤ k ≤ d

by {c(k)i }1≤i≤mk
.

4.1. Computing Symbolically. In this section we present an algorithm, which computes
±τ(C), i.e. the combinatorial torsion of a based chain complex C, up to a sign. Essentially,
we implement matrix τ -chains as defined by Turaev in [Tur86]. The algorithm will be suitable
for symbolical computations.

Definition 4.1.1. Let A ∈ Matn×m(F) be a matrix and say A has column vectors v1, . . . , vm ∈
Fn. A set of pivots of A is a subset P of {1, . . . ,m} such that {vi : i ∈ P} is a basis of the
column space spanF{v1, . . . , vm} ⊆ Fn of A.

For a matrix A ∈ Matn×m(F) a set of pivots P of A is given by the position of the first nonzero
entry in each row of a row echelon form of A. When we ask for a set of pivots of a matrix A in
side of an algorithm, we implicitly mean that a row echelon form of A is computed and a set of
pivots of A is obtained from it. Here, the transformation matrix, which used to bring A in row
echelon form, is not computed.

The first step of our algorithm will be computing a set of pivots P [k] of the matrix C[k]. Then
we check, whether C is exact via the following lemma.
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Algorithm 1 Reidemeister torsion

Require: {σ(k)
j } with k = 1, . . . , d and j = 1, . . . ,mk the data structure of a connected simplicial

set X, as defined in Section 2.2
Require: ρ : π → GL(Cn) a representation of the fundamental group π of X
Ensure: τ(X, ρ) the Reidemeister torsion of X with respect to the representation ρ

1: Compute a spanning tree Γ of the graph determined by the 1-skeleton of X
2: Store the nondegenerate edges ε1, . . . , εν of X which are not contained in Γ
3: Initialize a empty dictionary D
4: Initialize a dictionary C with keys k = 1, . . . , d and kth-value the (n ·mk−1)× (n ·mk) zero

matrix ▷ C encodes the boundary maps of the twist-complex.
5: for j = 1, . . . ,m1 do

6: C[1].submatrix(ni, nj, n× n) −= In, where d1(σ
(1)
j ) = σ

(0)
i

7: if σ
(1)
j = ϵµ then

8: Set D[σ
(1)
j ] := ρ([γµ])

−1, where γµ was defined before Proposition 3.0.1
9: else

10: Set D[σ
(1)
j ] := In

11: end if
12: C[1].submatrix(nl, nj, n× n) += D[σ

(1)
j ], where d0(σ

(1)
j ) = σ

(0)
l

13: end for
14: for k = 2, . . . , d and j = 1, . . . ,mk do

15: for r = 1, . . . , k if dr(σ
(k)
j ) is nondegenerate do

16: C[k].submatrix(ni, nj, n× n) += (−1)r ∗ In, where dr(σ(k)
j ) = σ

(k−1)
i

17: end for
18: dk(σ

(k)
j ) = si1 ◦ si2 ◦ · · · ◦ siζ (σ

(λ)
f ) for σ

(λ)
f nondegenerate, i1 > · · · > iζ ≥ 0

19: if iζ = 0, set D[σ
(k)
j ] := In, else set D[σ

(k)
j ] := D[σ

(λ)
f ]

20: if d0(σ
(k)
j ) is nondegenerate then

21: C[k].submatrix(ni, nj, n× n) += D[σ
(k)
j ], where d0(σ

(k)
j ) = σ

(k−1)
i

22: end if
23: end for
24: return the combinatorial torsion of a based chain complex with kth-boundary map repre-

sented by the matrix C[k] with respect to the distinguished bases.

Lemma 4.1.2. The chain complex C is exact if and only if for k = 0, . . . , d the inequality

rank(C(k)) + rank(C(k+1)) ≥ dim(Ck)

holds, where it is understood that C(d+1) = C(0) = 0.

Proof. C is exact at k if and only if rank(C(k+1)) ≥ dim(ker(C(k))) and the latter equals
dim(Ck)− rank(C(k)) by the rank-nullity theorem. □

From here on we can assume that C is exact, returning 0 otherwise. Now we let the integer k
run backwards k = d, d− 1, . . . , 2. We will set rk := rank(C(k)), which is equal to the cardinality

of P [k]. For i in {1, . . . , rk} and j the ith biggest integer in P [k] we define a
(k−1)
i := ∂(c

(k)
j ).

Then {a(k−1)
i }1≤i≤rk is a basis of im(∂k) ⊆ Ck−1. Further, we define {a(k)i+rk+1

}1≤i≤rk := {c(k)i :

i ∈ P [k]} with the convention rd+1 = 0.
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Lemma 4.1.3. For k = 1, . . . , d, the set {a(k)i }1≤i≤mk
is a basis of Ck.

Proof. By construction {a(k)i }1≤i≤rk+1
is a basis of im(∂k+1) ⊆ Ck and {∂a(k)i+rk+1

}1≤i≤rk is a

basis of im(∂k) ⊆ Ck−1. The result follows because the Sequence 1 is split exact. □

Let k ∈ {0, . . . , d}. We denote by B(k) ∈ Matmk,mk
(F) the base-change matrix from {c(k)i }

to {a(k)j }, i.e. a(k)j =
∑mk

i=1B
(k)
i,j c

(k)
i for all 1 ≤ j ≤ mk. The first rk+1 columns of B(k) consist

of those columns of C(k+1), whose index lies P [k + 1]. The set of the last rk column vectors
of B(k) equals {ei : i ∈ P [k]} ⊆ Fmk , where e1, . . . , emk

are the standard-basis vectors of Fmk .
We compute det(B(k)) by iterated Laplace expansion to get rid of the last rk columns of B(k).
Consequently, up to a sign, the determinant of B(k) equals the determinant of the matrix, which
is obtained from C(k+1) by deleting the columns, whose index doesn’t lie in P [k+1], and deleting
the rows, whose index lies in P [k]. This yields Algorithm 2.

Algorithm 2 Torsion of Chain Complexes with Gaussian Elimination

Require: A based chain complex C as defined in definition 2.1.6.
In detail, C is a dictionary with keys 1, . . . , d such that for all keys 1 ≤ k ≤ d the corresponding
value C[k] is the matrix representing the boundary map ∂ : Ck → Ck−1 with respect to the
distinguished bases.

Ensure: Up to a sign, the combinatorial torsion of the based chain complex C.

1: Initialize a dictionary P by setting P [d+ 1] and P [0] to be the empty set
2: for k = d, d− 1, . . . , 2, 1 do
3: Extend the dictionary P by setting P [k] to be a set of pivots of the matrix C[k]
4: if #(P [k]) + #(P [k + 1]) < mk then
5: return 0
6: end if
7: end for
8: if #(P [1]) < m0 then
9: return 0

10: end if
11: Set τ := 1 ▷ This is the determinant of B(d).
12: for k = d− 1, d− 2, . . . , 1, 0 do
13: Delete the columns of C[k + 1] with index not in P [k + 1]
14: Delete the rows of C[k + 1] with index in P [k].

15: Set τ = τ ∗ det(C[k + 1])(−1)k ▷ Compute this via LU -decomposition.
16: end for
17: return τ

Algorithm 2 does Gaussian elimination twice per matrix C(k). It is natural to ask if we can
find an alternative algorithm, in which we only do it once.

We claim that Algorithm 2 and Algorithm 3 compute the same numbers, up to possibly a
different choice of pivots:

Assume that P [k] is a set of pivots of C(k). The projection

pr : Ck → spanF{c
(k)
i : i /∈ P [k]},

mk∑
i=1

αic
(k)
i 7→

mk∑
i/∈P [k]

αic
(k)
i
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Algorithm 3 Torsion of Chain Complexes: One LU -decomposition per chain group

Require: A based chain complex C as defined in definition 2.1.6.
In detail, C is a dictionary with keys 1, . . . , d such that for all keys 1 ≤ k ≤ d the corresponding
value C[k] is the matrix representing the boundary map ∂ : Ck → Ck−1 with respect to the
distinguished bases.

Ensure: Up to a sign, the combinatorial torsion of the based chain complex C.

1: Set τ := 1 ∈ F
2: Initialize a dictionary Piv with keys 0, . . . , d and all values empty lists
3: for k = 0, 1, . . . , d− 2, d− 1 do
4: Delete the rows of C(k+1), whose row-index is contained in Piv[k]
5: Compute a LU-decomposition of C(k+1): C(k+1) = PLU
6: Set z := 1
7: for i = 1, . . . , r, with r the number of rows of C(k+1) do
8: if the ith row-vector of U is the zero vector then
9: return 0

10: else
11: Let j be the column-index of the first nonzero entry of the ith row of U
12: Set z = z ∗ Ui,j

13: Append the integer j to the list Piv[k + 1]
14: end if
15: end for
16: Set τ = τ ∗ z(−1)k

17: end for
18: if #(Piv[d]) < md then
19: return 0
20: else
21: return τ
22: end if

is injective restricted to im(∂k+1) as ker(∂k) ∩ ker(pr) = {0} and im(∂k+1) ⊆ ker(∂k). So, a set
of pivots of the matrix representing pr ◦ ∂k+1 with respect to the distinguished bases is a set of
pivots of C(k+1). Hence, if Piv[k] is a set of pivots of C(k), then in the for-loop of Algorithm 3
a set of pivots of C(k+1) is written into Piv[k + 1]. Further, by Lemma 4.1.2, the chain complex
C is exact at Ck if and only if pr ◦ ∂k+1 is surjective, which is checked in line 8 of Algorithm 3.
Lastly, up to sign, the value of z in line 16 equals the determinant of a matrix, which is obtained
from C(k+1) by deleting the rows with index in Piv[k] and deleting the columns with index not
contained in Piv[k + 1].

Remark 4.1.4. When computing the Reidemeister torsion for a simplicial set X in cases with
#Xk >> k we recommend to implement the above algorithms using sparse matrices.

4.2. Computing Numerically. In this subsection, as in Convention 4.0.1, we assume that C
is a based chain complex in the sense of Definition 2.1.6 and we further assume that the field F
over which C is defined equals (is contained in) the field of complex numbers C.

We will now explain the following preliminary algorithm.
The dictionary Ra has values Ra[k] = rank(C[k]) for all keys k ∈ {d, d− 1, . . . , 1}, as long C

is exact at k. By Lemma 4.1.2, the pseudocode in line 5 constitutes a test whether C is exact at
Ck+1 and the code in line 12 constitutes a test whether C is exact at C0. Now the combinatorial
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Algorithm 4 Preliminary Algorithm: Torsion of Chain Complexes over C
Require: A based chain complex C over C as defined in Definition 2.1.6.

In detail, C is a dictionary with keys 1, . . . , d such that for all keys 1 ≤ k ≤ d the corresponding
value C[k] ∈ Matmk−1,mk

(C) is the matrix representing the boundary map ∂ : Ck → Ck−1

with respect to the distinguished bases.
Ensure: The combinatorial torsion of the based chain complex C.

1: Initialize a dictionary Ra := {d : md}
2: Initialize a dictionary Ex = {d : Imd

∈ Matmd,md
(C)} ▷ Imd

the identity matrix
3: Initialize a dictionary Im = {} ▷ The empty dictionary
4: for k = d− 1, d− 2, . . . , 1, 0 do
5: if rank(C[k + 1]) < Ra[k + 1] then
6: return 0
7: end if
8: Extend the dictionary Ra by Ra[k] := mk − Ra[k + 1]
9: Extend the dictionary Im by Im[k] := C[k + 1] · (Ex[k + 1])

10: Extend Ex by a full-rank matrix Ex[k] ∈ Matmk,Ra[k](C) with (Im[k])† · (Ex[k]) = 0
11: end for
12: if Ra[0] == 0 then

13: return
∏d−1

k=0 det(Im[k] | Ex[k])(−1)k

14: else
15: return 0
16: end if

torsion of C is computed by an inductive process k → k − 1. In every step, we extend a basis of
im(∂k+1) to a basis of Ck, then we take the image under ∂k of that extended part as a basis of
im(∂k) and proceed. The coefficients of the extended part with respect to the distinguished basis
of Ck will be stored in Ex[k]. The coefficients of the image of the extended part with respect to
the distinguished basis of Ck−1 will be stored in Im[k − 1].

We extend the basis im(∂d+1) = {0} to a basis of Cd by the distinguished basis itself, so that
Ex[d] is the identity matrix. For the code in line 10 we use the fact that kernel of the Hermitian
adjoint equals the orthogonal complement of the image. So, in line 10 we actually extend a basis
of im(∂k+1) via an basis of im(∂k+1)

⊥ to a basis of Ck. Using these chosen bases, the number in
line 13 is, by definition, exactly the Reidemeister torsion of the based chain complex C.

Now we derive Algorithm 5 from the preliminary Algorithm 4. The advantage of Algorithm 5
is that it is numerically stable and it suffices to do the following computations per chain group
Ck: A singular value decomposition C[k] = U · Σ · V †, the determinant calculations det(U),
det(W ) and a matrix product V † · (Ex).

The if-clause in line 6 of Algorithm 5 serves exactly the same purpose as the if-clause in line
5 of algorithm 4. As, also, the if-condition in the end of both algorithms agree, we might assume
in deriving Algorithm 5 that the chain complex C is exact.

Let us put ourselves in the situation of the for-loop of Algorithm 5. We identify the matrix Ex
with Ex[k+1] in Algorithm 5. This will be justified inductively k → k− 1 and is clear for k = d.
If C[k+1] = UΣV † is a singular value decomposition as in Algorithm 5, then (C[k+1] · (Ex))† =
(Ex)† · V · Σ · U†. For now let us denote the matrix defined in line 12 by M . Because, U†U is
the identity matrix, the matrix M is a full rank-matrix with (C[k+1] · (Ex))† ·W = 0, where we
used that the last Ra[k]-column-vectors of Σ are zero vectors. This justifies that the preliminary
Algorithm 4 would return the correct result, when for every k ∈ {1, . . . , d} we set Ex[k+1] = Ex,
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Algorithm 5 Torsion of Chain Complexes with Singular Value Decomposition

Require: A based chain complex C over C as defined in Definition 2.1.6.
In detail, C is a dictionary with keys 1, . . . , d such that for all keys 1 ≤ k ≤ d the corresponding
value C[k] ∈ Matmk−1,mk

(C) is the matrix representing the boundary map ∂ : Ck → Ck−1

with respect to the distinguished bases.
Ensure: The combinatorial torsion of the based chain complex C.

1: Initialize a dictionary Ra := {d : md}
2: Set Ex := Imd

∈ Matmd,md
(C) ▷ Imd

the identity matrix.
3: Set τ := 1
4: for k = d− 1, d− 2, . . . , 1, 0 do
5: Compute a singular value decomposition C[k + 1] = UΣV † with singular values
ζ1, . . . , ζmin{mk,mk+1}, ordered by absolute value in decreasing order

6: if Ra[k + 1] > mk or (Ra[k + 1] > 0 and ζRa[k+1] = 0) then
7: return 0
8: end if
9: Extend the dictionary Ra by Ra[k] := mk − Ra[k + 1]

10: Let W be the submatrix of V † · (Ex) consisting of the first Ra[k + 1] rows and columns

11: Set τ = τ · det(U)(−1)k · (
∏rk

i=1 ζi)
(−1)k · det(W )(−1)k

12: Set Ex ∈ Matmk,Ra[k](C) to consist of the last Ra[k]-columns of U
13: end for
14: if Ra[0] == 0 then
15: return τ
16: else
17: return 0
18: end if

Ex[k] =M and Im[k] = C[k+1] · (Ex), where the matrices Ex and M come from the for-loop of
Algorithm 5. Using this translation from Algorithm 4 to Algorithm 5 we obtain that,

det(Im[k] |Ex[k]) = det (C[k + 1] · (Ex)|M) = det

(
UΣV †(Ex)

∣∣∣∣U ·
(

0
IRa[k]

))
= det(U) det

(
diag(ζ1, . . . , ζRa[k+1])W 0

0 IRa[k]

)

= det(U) ·

Ra[k+1]∏
i=1

ζi

 · det(W ),

which proves the correctness of Algorithm 5. Here the vertical line denotes concatenation of
matrices.
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5. Implementation and Results

For ζ5 := e2πi/5 ∈ C the Reidemeister torsion of the Poincaré homology 3-sphere with respect
to the 9 irreducible representations of its fundamental group are 0, 1, 23 ,

3
5 ,

1
2 and

4 + 2ζ25 + 2ζ35 ≈ 0.763932022500211,

−2 + 2ζ25 + 2ζ35 ≈ 5.23606797749979,

−1 +
1

2
ζ25 +

1

2
ζ35 ≈ 1.80901699437495,

3

2
+

1

2
ζ25 +

1

2
ζ35 ≈ 0.690983005625053,

which are real numbers but not all of them are algebraic integers. These result were computed
via the algorithm developed above. While the symbolic calculation of that 9 results takes ap-
proximately 135 to 288 seconds, the numerical algorithm runs in 61 to 81 seconds. Here, all of
the results combined were computed in one run. These computations have been performed on
a Jupyter Notebook with a Windows Subsystem for Linux on a laptop with 16 GB RAM and a
2.00 GHz processor.

Recall the following fact on Reidemeister torsion Let X,Y be CW-complexes and ϕ : π1(X) →
GL(Cn), ψ : π1(Y ) → GL(Cm) representations of their fundamental groups. Then, we have for
the Reidemeister torsions

τ(X × Y, ϕ⊗ ψ) = τ(X,ϕ)χ(Y )τ(Y, ψ)χ(X),

with the usual convention 00 = 1. For reference see [Fre92]. We successfully tested our algorithm
by comparing the above statement to our direct computation in the following examples:

S2 × RP 3, L(3; 1, 1)× RP 2, L(3; 1, 1)× S2, L(3; 1, 2)× RP 2, L(3; 1, 2)× S2,

L(3; 1, 1)× L(3; 1, 2), L(3; 1, 2)× CP 2, RP 3 × CP 2,

where L(q; r1, . . . , rn) is the notation for lens spaces used in Turaev’s book [Tur01]. We obtained
an algorithmic construction of general lens spaces by implementing joins of simplicial sets: The
lens space L(q; r1, . . . , rn) is the pushout of the identity morphism of S2n−1 ∼= S1 ⋆ · · · ⋆ S1 and
the n-fold join ρr1 ⋆ · · · ⋆ρrn . Here ρri : S

1 → S1 denotes the automorphism of the directed cycle
graph with q vertices, which maps the jth-vertex to the (ri + j mod q)th-vertex.

5.1. Outlook. Given a homotopy equivalence, with out loss of generality an inclusion of a pair
X ↪→ Y , we can inspect its Whitehead torsion. A modification of our algorithm allows to check
for triviality of the Reidemeister torsion of the pair (Y,X), which in turn will imply finite order of
(Y,X) in the geometric Whitehead group, see [Mil66, Theorem 8.1]. The geometric Whitehead
group is described in [Coh12, Chapter II.§6]. It would be interesting to obtain a description of
the simple homotopy equivalence witnessing the finite order of (Y,X) in the Whitehead group
of X. For example, one might like to find a discrete vector field encoding this.

Another natural question emerging from the results in this paper is to find a theoretical
condition for the Reidemeister torsion being an algebraic integer. While our computation of the
Reidemeister torsion of the Poincaré homology 3-sphere gives an example of a 3-manifold where
this is not the case, in the recent paper [KN22] the authors provide a large class of 3-manifolds
whose Reidemeister torsions are algebraic integers.
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