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Abstract

The Reidemeister torsion is a well-known invariant in the field of algebraic topology,
but is generally difficult to calculate in practice. In this thesis, we develop an algorithm
that calculates the Reidemeister torsion of the geometric realization of a simplicial set.
We implemented the algorithm in SageMath and used it to numerically calculate the
Reidemeister torsions of the Poincaré homology 3-sphere with respect to all irreducible
complex representations of its fundamental group. Similar calculations were also per-
formed for several lens and product spaces.

Zusammenfassung auf Deutsch

Die Reidemeister-Torsion ist eine bekannte Invariante auf dem Gebiet der algebraisch-
en Topologie. Sie lässt sich in der Praxis jedoch im Allgemeinen nur schwer berechnen.
In dieser Bachelorarbeit entwickeln wir einen Algorithmus, der die Reidemeister-Torsion
der geometrischen Realisierung einer simplizialen Menge berechnet. Wir haben den Algo-
rithmus in SageMath implementiert und ihn verwendet, um die Reidemeister-Torsionen
der Poincaré-Homologie-3-Sphäre in Bezug auf alle irreduziblen komplexen Darstellung-
en ihrer Fundamentalgruppe numerisch zu berechnen. Ähnliche Berechnungen wurden
auch für mehrere Linsen- und Produkträume durchgeführt.
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1. Introduction

1. Introduction

The Reidemeister torsion was the first invariant in algebraic topology that could dis-
tinguish between CW-complexes that are homotopy equivalent but not homeomorphic.
Reidemeister torsion has been extensively studied since its introduction in 1935. There is
enormous interest in knowing the Reidemeister torsion of specific spaces, but in general
Reidemeister torsion is very difficult to calculate by hand.
The definition of Reidemeister torsion via the chain complex of a universal cover

is already kind of constructive but can be hard to handle by hand if a given CW-
decomposition consists of many complicatedly arranged cells. We found a way to com-
pletely automate this process of computing Reidemeister torsion for simplicial sets with
finitely many nondegenerate simplices. In particular, we were able to develop an al-
gorithm that computes the chain complex of the universal cover of a predetermined
simplicial set X as a chain-complex of free modules over the integral group ring of the
fundamental group π1(X).
This approach to Reidemeister torsion via covering spaces lead us to consider covering

projections of simplicial sets. As a byproduct of this considerations, we developed an
algorithm that has input a connected simplicial set X, which has only finitely many non-
degenerate simplices, and a normal, finite-index subgroup N ⊆ π1(X). The algorithm
returns a connected simplicial set Z together with a covering projection p : Z → X such
that p∗π1(X) = N . If wanted, the covering projection p : Z → X can also be returned
as the structure map of a pullback, together with the corresponding pullback square. In
that case, p will be obtained as a pullback of a universal covering projection, namely
the universal cover of the dim(X)-skeleton of the classifying space of the quotient group
π1(X)/N .

As suggested by the title, the main goal of this bachelor thesis is to develop an algo-
rithm to compute combinatorial torsions. By combinatorial torsion we mean, on the one
hand, the torsion of chain complexes, as defined in [11, chap. 3]. But, above all, we will
deal with Reidemeister torsion. Nevertheless, our approach to calculating Reidemeister
torsion can not do without calculating the torsion of chain-complexes. So, we developed
an algorithm that computes the torsion of a based and bounded chain-complex of finite-
dimensional C-vector spaces.

While Reidemeister torsion is defined for finite CW-complexes, we decided to work
with simplicial sets as it is an implementable data structure that still offers great gen-
erality and specifically includes simplicial complexes and ∆-complexes.
We start in the first section with definitions and basic theorems on simplicial sets

to settle the notations and conventions appearing in this thesis. Here, only well-known
results are presented and we will for the main part follow the first chapter of [10]. Readers
who are already familiar with simplicial sets are advised to skip this chapter for the time
being and return only if unfamiliar notations or theorems are used later.
In the next chapter on covering space projections we introduce a convenient definition

of covering projections of simplicial sets. The aim of the chapter is not to have to
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1. Introduction

change categories in the remaining parts of the bachelor thesis, i.e. we want do define
and compute notions like Reidemeister torsion already in the category of simplicial sets
and we want to avoid having to take a detour over topological spaces or CW-complexes.
Most of the results presented in this chapter can be found in [5, App. I].
The chapter on computation is divided into three parts. In the first subsection, we

develop an algorithm that takes as input a simplicial set together with a subgroup of its
fundamental group and returns a covering projection corresponding to that subgroup. In
the second subsection, we fabricate an algorithm to compute the combinatorial torsion
of a based chain complex of C-vector spaces using singular value decomposition. Now
in the third subsection, combining the results of the previous sections, we develop an
algorithm that computes the Reidemeister torsion of simplicial sets.
In the last chapter we briefly discuss the data structures and relevant implementation

details of the algorithms discussed in this paper.
The appendix contains the source code of the SageMath implementation of the algo-

rithms discussed in this thesis. Some example calculations are also prepared there in
a comprehensible manner. At the beginning of the appendix there is a brief overview
of the implemented functions and examples. The code is also available under https:

//github.com/fNeugebauer/Computation-of-Combinatorial-Torsion.
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2. Preliminaries: Simplicial Sets

2. Preliminaries: Simplicial Sets

2.1. The category of simplicial sets

Definition 2.1 (Simplicial sets). Let ∆ denote the simplex category, whose objects are
nonempty linearly ordered sets of the form

[n] = {0, 1, 2, . . . , n}

for all n ≥ 0 and whose morphisms are (non-strictly) order-preserving functions between
these sets.
A simplicial set X is a contravariant functor ∆ → Set, where Set is the category of
sets.
We denote the presheaf category on ∆ as sSet, i.e. the objects of the category sSet are
simplicial sets and the morphism in sSet are natural transformations between simplicial
sets.

Terminology. Given a simplicial set X, we write Xn instead of X([n]). The elements of
Xn are called the n-simplices of X. For a morphism, also called map, of simplicial sets
f : X → Y we denote its component Xn → Yn by fn and for σ ∈ Xn we sometimes write
f(σ) for fn(σ) ∈ Yn.
Remark. All small limits and colimits in sSet exist and are computed pointwise. A
morphisms of simplicial sets f : X → Y is a mononomorphism (epimorphism) if and
only if fn : Xn → Yn is injective (surjective) for all n ≥ 0. f is an isomorphism if
and only if fn : Xn → Yn is bijective for all n ≥ 0. Pullbacks and pushforwards in the
category sSet preserve both monomorphisms and epimorphisms.

Terminology. For n a positive integer, we denote for i = 0, . . . , n

δi := δn,i : [n− 1]→ [n], δi(j) =

{
j j < i

j + 1 j ≥ i

and for n ∈ N0 we denote for i = 0, . . . , n

σi := σn,i : [n+ 1]→ [n], σi(j) =

{
j j ≤ i

j − 1 j > i.

Definition 2.2 (Face and degeneracy maps). For a simplicial set X we define the ith-
face map di,n := di := X(δi,n) : Xn → Xn+1 as the evaluation of the functor X on the
morphism δi,n, where n is any positive integer and 0 ≤ i ≤ n.
We define the ith-degeneracy map si,n := si := X(σn,i) : Xn → Xn+1 as the evaluation

of X on the morphism σn,i, where n is a non-negative integer and 0 ≤ i ≤ n.

Remark. It is customary to omit the integer n in the notation of face and boundary
maps if the domain is clear.
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2. Preliminaries: Simplicial Sets

For any simplicial set X the degeneracy maps and face maps satisfy the simplicial
identities :

1. For n ≥ 2 and 0 ≤ i < j ≤ n

di ◦ dj = dj−1 ◦ di (1)

as maps Xn to Xn−2.

2. For n ≥ 0 and 0 ≤ i ≤ j ≤ n

si ◦ sj = sj+1 ◦ si (2)

as maps Xn → Xn+2.

3. For n ≥ 0 and 0 ≤ i, j ≤ n

di ◦ sj =


sj−1 ◦ di if i < j

idCn if i = j or i = j + 1

sj ◦ di−1 if i > j + 1.

(3)

as maps Xn → Xn.

Conversely, given a sequence {Xn}n≥0 of sets together with maps di,n : Xn → Xn−1 for
n ≥ 1, 0 ≤ i ≤ n and si,j : Xn → Xn+1 for n ≥ 0, 0 ≤ i ≤ n satisfying the simplicial
identities there is a unique simplicial set X that has these face maps and degeneracy
maps.

Remark 2.3. Let X be a simplicial set and for every n ≥ 0 let Yn ⊆ Xn be a subset, such
that the face maps di : Xn → Xn−1 and degeneracy maps σi : Xn → Xn+1 of X carry
Yn to Yn−1 and Yn+1, respectively. Then the collection {Yn}n≥1 inherits the structure of
a simplicial set Y . We will say that Y is a simplicial subset of X and the morphism
ι : Y → X with ιn(σ) = σ for all n ≥ 0, σ ∈ Xn is called the inclusion of Y into X.
Note that ι is a monomorphism. Further, (X, Y ) is called a pair of simplicial sets.

Construction 2.4 (Preimage and image). Given a morphism of simplicial sets f :
X → Y and simplicial subsets X ′ ⊆ X, Y ′ ⊆ Y . We define f |X′ as the composition

X ′ ↪→ X
f−→ Y . The image f(X ′) of X ′ under f is defined as the simplicial subset of Y

with f(X ′)n = f(X ′
n) for all n ≥ 0. Then f(X ′) together with the monomorphism given

by the inclusion morphism f(X ′) ↪→ Y satisfies the following universal property:

• There exists a morphism, by abuse of notation, also denoted by f : X ′ → f(X ′),
such that post-composing it with the inclusion morphism f(X ′) ↪→ Y equals the
original f .

• For any simplicial set Z with a morphism e : X → Z and a monomorphism
m : Z → Y such that m ◦ e = f there exists a unique morphism v : f(X ′) → Z
such that the composition m ◦ v equals the inclusion of f(X ′) into X.
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2. Preliminaries: Simplicial Sets

Further, we define the preimage of Y ′ under f , denoted f−1(Y ′), as the simplicial subset
of X given by f−1(Y ′)n = f−1

n (Y ′
n) for all n ≥ 0. We, by abuse of notation, also denote

the map f−1(Y ′) → Y ′, which is induced by f , as f |f−1(Y ′). Then f−1(Y ′) together
with the inclusion of f−1(Y ′) into X and f |f−1(Y ′) satisfy the universal property of the

pullback of the diagram Y ′ ↪→ Y
f←− X.

Definition 2.5 (The standard simplex and its simplicial subsets).

a) For n ≥ 0 we define the standard n-simplex ∆n to be the contravariant Hom-
functor Hom∆(−, [n]), considered as a simplicial set. By convention, we set ∆−1 =
∅. We define the geometric realization of ∆n to be the topological space |∆n| given
by the convex hull of the standard basis of Rn+1 equipped with the subspace topol-
ogy from Rn+1. To each α ∈ Hom∆([m], [n]) we assign |α| ∈ HomTop(|∆m|, |∆n|),
where

|α|(t0, . . . , tm) 7→

 ∑
α(i)=0

ti,
∑

α(i)=1

ti, . . . ,
∑

α(i)=n

ti

 .

b) For n ≥ 0 an integer and U a nonempty collection of subsets of [n] = {1, . . . , n}
we will say that U is downward closed if ∅ ≠ I ⊆ J ∈ U implies that I ∈ U . If this
condition is satisfied, we let ∆n

U be the simplicial subset of ∆n whose m-simplices
are non-decreasing maps α : [m]→ [n] such that im(α) ∈ U . We set

|∆n
U | = {(t0, . . . , tn) ∈ |∆n| : {i ∈ [n] : ti ̸= 0} ∈ U}.

c) For each n ≥ 0 the boundary ∂∆n is defined as ∆U , where U is the collection of
all nonempty proper subsets of [n].

d) For 0 ≤ i ≤ n the horn Λn
i is defined as ∆n

U , where U is the collection of all subsets
of [n] distinct from [n] and [n] \ {i}.

Remark 2.6 (Yoneda lemma). For each n ≥ 0, the pair (∆n, id[n] ∈ ∆n
n) satisfies the

following universal property: For any simplicial set X and n-simplex σ′ ∈ Xn there
exists a unique morphism σ ∈ HomsSet(∆

n, X) with σn(id[n]) = σ′. Concretely, σ is
given by σm(α) = X(α)(σ′) for α ∈ ∆n

m. It is customary to identify σ and σ′. In
particular, we denote morphisms ∆n → ∆m as α for α ∈ Hom∆([n], [m]) the unique
order-preserving map such that the morphism ∆n → ∆m is given by post-composition
with α. For σ an n-simplex of a simplicial set X and for every morphism α : [n]→ [m]
in ∆, the morphism corresponding to X(α)(σ) factors as ∆m α−→ ∆n σ−→ X. In particular,
di(σ) = σ ◦ δi,n and si(σ) = σ ◦ σn,i, whenever those notions are defined.

Proposition 2.7 (Characterizations of horns). [10, Exercise 000Z] Let X be a simplicial
set, m a non-negative integer and 0 ≤ i ≤ m. Then

HomsSet(Λ
m
i , X)→

m−1∏
j=0

Xm−1, f 7→ {f ◦ δj}j∈[m]\{i}

5
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2. Preliminaries: Simplicial Sets

is injective with image the collection of ”incomplete” sequences (σ1, . . . , σi−1, ·, σi, . . . , σn)
with dk(σj) = dj−1(σk) for j, k ∈ [n] \ {i} and k < j. (In particular, for j ∈ [m] \ {i},
the morphism δj : ∆m−1 → ∆m, factors as composition ∆m−1 → Λm

i ↪→ ∆m, where we,
by abuse of notation, denote the first map as δj, also.)

Definition 2.8 (A vertex of a simplex). Let X be a simplicial set X, n a non-negative
integer, i ∈ [n] and U ⊆ [n] a downward closed collection of subsets of [n], such that
{i} ∈ U . For any σ : ∆n

U → X, we define the ith vertex of σ, denoted σ(i), as the

composition ∆0 α−→ ∆n
U

ρ−→ X for α : [0] → [n], 0 7→ i. Clearly, α : ∆0 → ∆n has image
in ∆n

U and therefore σ(i) ∈ X0 is a well-defined 0-simplex of X.

2.2. Nondegenerate simplices

Proposition 2.9. [10, Tag 0010] Let X be a simplicial set and let σ ∈ Xn for some
n > 0, which we identify with a map of simplicial sets σ : ∆n → X. The following
conditions are equivalent:

a) The simplex σ belongs to the image of the degeneracy map si : Xn−1 → Xn for
some 0 ≤ i ≤ n− 1.

b) The map σ factors as a composition ∆n α−→ ∆n−1 → ∆n, where α is a surjective
map of linearly ordered sets [n]→ [n− 1].

c) The map σ factors as a composition ∆n α−→ ∆m → X, where m < n and α is a
surjective map of linearly ordered sets [n]→ [m].

d) The map σ factors as a composition ∆n → ∆m → X, where m < n.

e) The map σ factors as ∆n σ′
−→ ∆m → X, where σ′

0 is not injective.

Definition 2.10 (Degenerate and nondegenerate simplices). Let X be a simplicial set
and let σ : ∆n → X be an n-simplex. σ is called degenerate if n > 0 and σ satisfies
the equivalent conditions from proposition 2.9. We say that σ is nondegenerate if σ is
not degenerate. For each n ≥ 0 we let Xnd

n ⊆ Xn denote the subset of Xn consisting of
nondegenerate n-simplices of X.

In the next proposition, we cite two results that explain why in an implementation of
simplicial sets only non-degenerate simplices have to be specified.

Proposition 2.11 (Simplicial sets are determined by nondegenerate simplices).

a) Let f : X → Y be a morphism of simplicial sets. If σ is a degenerate n-simplex of
X, then f(σ) is a degenerate n-simplex of Y .

b) Let σ : ∆n → X be an n-simplex of X. Then σ can be factored as composition

∆n α−→ ∆m τ−→ X,

6
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2. Preliminaries: Simplicial Sets

where α is a surjective map of linearly ordered sets [n]→ [m] and τ is a nondegen-
erate m-simplex of X. Moreover, this factorisation is unique and m is the smallest
nonnegative integer for which σ can be factored as a composition ∆n → ∆m → X.

c) A morphism f : X → Y of simplicial sets is a monomorphisms if and only if
f maps any two distinct nondegenerate simplices of X to distinct nondegenerate
simplices of Y .

Proof. a) is clear and b) is [10, Proposition 0014]. For c), the only if part follows by 2.1
and the definition of degeneracy. For the other direction, it is straightforward to prove
that fn is injective for all n by hand using part b) of this proposition. For a different
proof see [19, Lemma 017S].

Convention 2.12. Let X be a simplicial set and let σ : ∆n → X be an n-simplex.
By proposition 2.11 and the simplicial identity (2), there exists a unique triple (m, τ, I),
where m ≥ 0 is an integer, τ is a nondegenerate m-simplex of X and I = {i1, . . . , in−m}
with n > i1 > i2 > · · · > in−m ≥ 0, such that

sI(τ) := si1 ◦ si2 ◦ · · · ◦ sin−m(τ) = σ.

From now on, the notation sI will be reserved for exactly this use. Further, we define

σI = σin−m ◦ σin−m−1 ◦ · · · ◦ σi2 ◦ σi1 : [n]→ [m],

which is the morphism in ∆ such that sI = X(σI) for any simplicial set X. Be careful,
σI is an n-simplex of ∆m but not a simplex of X. In fact, σ : ∆n → X equals the

composition ∆n σI

−→ ∆m τ−→ X.

2.3. The skeletal filtration

Definition 2.13 (Dimension of simplicial sets). For k ≥ −1 a simplicial set X has
dimension ≤ k, if for all n > k every n-simplex in Xn is degenerate. If k ≥ 0, we say
X has dimension k if X has dimension ≤ k but not dimension ≤ k − 1. We say X is
finite dimensional if there exists k ≥ 0 such that dimX ≤ k. Further, we say that X is
of finite type, if for all n ≥ 0 the set Xn has finite cardinality. X is called finite, if X is
finite dimensional and of finite type.

Construction 2.14 (The k-skeleton). Let X be a simplicial set and let k ≥ −1 be an
integer. It follows from proposition 2.11 b) that for any n-simplex σ : ∆n → X of X the
following are equivalent:

a) σ = sI(τ) for τ ∈ Xnd
m . Then m ≤ k.

b) There exists a factorization ∆n → ∆m′ → X of σ with m′ ≤ k.

7
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2. Preliminaries: Simplicial Sets

For each n ≥ 0, we denote by skk(Xn) the subset of Xn containing all simplices of Xn

satisfying conditions a) and b) above. From b) and remark 2.6 we see that the collection
{skk(Xn) ⊆ X}n≥0 is stable under the face and degeneracy operators of X and therefore
determines a simplicial subset of X by remark 2.3. We will call this simplicial subset
the k-skeleton of X and denote it by skk(X).
If n ≤ k then skk(X)n = skk(Xn) = Xn, in particular,

X =
⋃

k≥−1

skk(X). (4)

If n > k, then skk(X)n = skk(Xn) ⊆ Xn \Xnd
n . So, dim(skk(X)) ≤ k for all k ≥ 0. Also,

sk−1(X) = ∅.

Remark. Some authors define skk as a functor from sSet to sSet≤k, which is the category
of functors from ∆≤k to Set, where ∆≤k is the full subcategory of ∆ with objects [m]
for m ≤ k.

Proposition 2.15 (Universal property of the k-skeleton). [10, Tag 001A] The k-skeleton
of a simplicial set X and its inclusion skk(X) ↪→ X satisfies the following universal prop-
erty: For every simplicial set Y of dimension ≤ k, post-composition with the inclusion
skk(X) ↪→ X, induces a bijection

HomsSet(Y, skk(X))→ HomsSet(Y,X).

Remark. In fact, the functor skk : sSet → sSet admits a left adjoint, the so-called
co-skeleton functor, see [19, Tag 018K].

Proposition 2.16 (Nondegenerate simplices of the product). For two simplicial sets
X, Y and n ≥ 0 a non-negative integer let Ψ : (X × Y )n → Xn× Yn be the canonical bi-
jection induced by the projections on the factors. Then Ψ precomposed with the inclusion
(X × Y )ndn ↪→ (X × Y )n has image

{(sI(σ), sJ(τ)) ∈ Xn × Yn | σ, τ nondegenerate and I ∩ J = ∅}.

If σ and τ are nondegenerate simplices of dimensions k and l, in the product they will
lead to

(
n
k

)
·
(

k
n−l

)
nondegenerate simplices in dimension n ≤ k+ l and no nondegenerate

simplices in dimension n > k+ l. In particular, dim(X×Y ) = dimX+dimY , whenever
X and Y are nonempty.

Proof. This is follows from the simplicial identity (2) and the fact si(Ψ
−1(sI(σ), sJ(σ))) =

Ψ−1(si(sI(σ)), si(sJ(τ))) for i = 0, . . . , r and any r ≥ 0. See [4, Example 5.5].

Definition 2.17 (Attaching map). Let X be a simplicial set and k ≥ 0. Let σ ∈ Xnd
k .

Since the boundary ∂∆k ⊆ ∆k has dimension k − 1, the composition ∂∆k ↪→ ∆k σ−→ X

equals the composition ∂∆k ϕσ−→ skk−1(X) ↪→ X for a unique ϕσ : ∂∆k → skk−1(X). This
is by proposition 2.15. We refer to ϕσ as the attaching map of σ. Further, we call the

unique map Φσ : ∆k → skk(X) such that σ factors as composition ∆k Φσ−→ skk(X) ↪→ X
the characteristic map of σ.
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2. Preliminaries: Simplicial Sets

Proposition 2.18 (The skeletal filtration). Let X be a simplicial set and let k ≥ 0.
Then the following diagram is a pushout square in the category sSet:∐

σ∈Xnd
k
∂∆k

∐
σ∈Xnd

k
∆k

skk−1(X) skk(X)

(Φσ)(ϕσ)

The top horizontal map is the coproduct of inclusions ∂∆k ↪→ ∆k indexed over Xnd
k and

the lower horizontal map is the canonical inclusion skk−1(X) ↪→ skk(X).

Proof. The commutativity of the diagram, which is immediate from definition 2.17, is
equivalent to the existence of a map F from the pushout to skk(X). Let σ : ∆n → skk(X)
be an n-simplex of skk(X). It suffices to prove that σ ∈ sk(Xn) has a unique preimage
under F . By proposition 2.11 b) there is a unique pair of a surjective map of linearly
ordered sets α : [n]→ [m] and a nondegenerate m-simplex τ : ∆m → skk(X), such that
σ equals to the composition ∆n α−→ ∆m τ−→ skk(X). By definition of the k-skeleton 2.14
we must have m ≤ k. σ has a preimage in skk−1(X) if and only if m < k. So, if m = k
the statement is clear. When m < k, then τ factors uniquely through a non-degenerate
m-simplex λ of skk−1(X). Also, every nondegenerate m-simplex ρ : ∆m → ∆k with
Φσ ◦ ρ = τ factors through ∂∆k and is therefore identified with λ in the pushout.

2.4. Geometric realization

Construction 2.19 (The singular simplicial set of a topological space). For a topolog-
ical space S we define a simplicial set Sing(S), the so-called singular simplicial set of S,
as follows: Each [n] will be assigned to HomTop(|∆n|, S) and each α ∈ Hom∆([n], [m])
will be assigned to precomposition by |α|, where |α| was defined in definition 2.5.
Sing : Top→ sSet becomes a functor by assigning to a continuous map f : S → T the
natural transformation f# that is given by post-composition by f on every component.

Definition 2.20 (Geometric Realization). Let X be a simplicial set and S a topological
space. A map of simplicial sets uX : X → Sing(S) is said to exhibit S as a geometric
realization of X if, for every topological space T , the composite map

HomTop(S, T )
Sing(−)−−−−→ HomsSet(Sing(S), Sing(T ))

u∗
−→ HomsSet(X, Sing(T ))

is bijective, where u∗X denotes precomposition by uX .
If uX : X → Sing(S), uY : Y → Sing(T ) exhibit S and T as geometric realization of

X and Y , respectively, and f ∈ HomsSet(X, Y ) then we define |f | ∈ HomTop(S, T ) as
the unique continuous map with |f |# ◦ uX = uY ◦ f .
By this assignments we are planning to obtain a geometric realization functor | · | :

sSet → Top, which sends a simplicial set X to a geometric realization |X| and a
morphism f to |f |. Then, | · | is defined up to a natural isomorphism. By [12, Prop.
2.10], it suffices to show that every simplicial set X admits a geometric realization, and
then | · | will automatically promote to a functor that is left-adjoint to Sing(−).

9



2. Preliminaries: Simplicial Sets

Lemma 2.21. [10, Proposition 0028] For n a non-negative integer and U a downward
closed collection of subsets of [n], the canonical map ∆n → Sing(|∆n|) determined by
id|∆n| ∈ Singn(|∆n|) restricts to a map of simplicial sets ∆n

U → Sing(|∆n
U |), which ex-

hibits |∆n
U | as geometric realization of ∆n

U . |∆n
U was defined in definition 2.5. For

α ∈ Hom∆([m], [n]), the map |α| from definition 2.5 satisfies |α|# ◦ u∆m = u∆n ◦ α,
which asserts that our notation is consistent, in the sense that α : ∆m → ∆n has geo-
metric realization |α|.

Proof. For ∆n
U = ∆n this follows directly from definition of Sing(−) and the Yoneda

lemma. The lemma can then be proven by induction on the cardinality of U , see [10,
Proposition 0028]. The last statement is a straightforward check.

Lemma 2.22. [10, Lemma 0023] Let J be a small category and F : J → sSet a functor.
Let X = colimj∈JF (j) be a colimit of F . If each of the simplicial sets F (j) admits a
geometric realization |F (j)|, then X admits a geometric realization, given by the colimit
|X| = colimj∈J |F (j)|.

Proof. In view of definition 2.20, this is a reformulation of “left adjoints preserve colim-
its”, for details see [10, Tag 0023].

Construction 2.23 (Existence of geometric realization). Given a simplicial set X. We
use induction on k ≥ −1 to prove that skk(X) admits a geometric realization.
The empty map exhibits the empty set as geometric realization of sk−1(X). Suppose
for given k ≥ 0, we have already constructed a topological space |skk−1(X)| and a map
uskk−1(X) : skk−1(X)→ Sing(|skk−1(X)|) that exhibits |skk−1(X)| as geometric realization
of skk−1(X). Then, we define |skk(X)| via the following pushout in the category Top∐

σ∈Xnd
k
|∂∆k|

∐
σ∈Xnd

k
|∆k|

|skk−1(X)| |skk(X)|

Φ(|ϕσ |) (5)

and define a morphism of simplicial sets uskk(X) : skk(X) → Sing(|skk(X)|) using the
universal property of the pushout in 2.18 as follows: On skk−1(X) the map should equal
uskk−1

. Further, each non-degenerate k-simplex τ of
∐

σ∈Xnd
k
∆k should be send to the

restriction of Φ to the component of
∐

σ∈Xnd
k
|∆k| corresponding to τ . That uskk(X) is well-

defined and exhibits |skk(X)| as a geometric realization of skk(X) follows from lemma
2.22 in conjunction with proposition 2.18. The same lemma proves that Φ = (|Φσ|)σ∈Xnd

k

for Φσ the characteristic map of σ ∈ Xnd
k .

Define |X| := colimk≥0|skk(X)| as the colimit in the category of topological spaces. By
equation (4) and lemma 2.22 the unique map uX : X → Sing|X|, that agrees on skk(X)
with uskk(X) for all k ≥ 0, exhibits |X| as a geometric realization of X.

Remark/Definition 2.24. Let X be a simplicial set. |X| admits the structure of a CW-
complex |X|CW with skeletal filtration

|sk−1(X)| ⊆ |sk0(X)| ⊆ |sk1(X)| ⊆ · · · ⊆ X.
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2. Preliminaries: Simplicial Sets

Given a morphism f : X → Y of simplicial sets and σ ∈ Xn for n ≥ 0. Then σ = sJ(ρ)
for a unique ρ ∈ Xnd

k with k ≤ n and f(ρ) = sI(τ) for a unique τ ∈ Y nd
m with m ≤ k.

a) The k-simplex uX(ρ) ∈ Sing(X)k is the geometric realization of ∆k ρ−→ X, written

|ρ|, and equals the composition |∆k| |Φρ|−−→ |skk(X)| ↪→ |X|. We will call

eρ := |ρ|(|∆n| \ |∂∆n|)

the open cell of |X|CW corresponding to ρ.

b) The n-simplex uX(σ) ∈ Sing(X)n is the geometric realization of ∆n σ−→ X, writ-

ten |σ|, and equals sJ(ux(σ)), which, in turn, equals the composition |∆n| |σJ |−−→
|∆k| |Φρ|−−→ |skk(X)| ↪→ |X|. By abuse of notation, we denote the image of the map
|σ| : |∆n| → |X| by |σ| ⊆ |X|.

c) We have that uY (f(ρ)) = |f | ◦ |ρ|, which is given by the composition

|∆k| |Φρ|−−→ |skk(X)| ↪→ |X| |f |−→ Y.

Further, |f | ◦ |ρ| equals uY (sI(τ))) = |τ | ◦ |σI |, which is given by the composition

|∆k| |σI |−−→ |∆m| |Φτ |−−→ |skm(Y )| ↪→ |Y |,

using the notation σI from the convention 2.12.

d) |f |◦|σ| = |f |◦|ρ◦σJ | = |f |◦|ρ|◦|σJ | = |τ |◦|σI |◦|σJ | = |τ ◦σI ◦σJ | = |(sJ ◦sI)(τ)|.

In particular, |f | is filtration preserving, i.e. a cellular map, and therefore the functor

| · | factors as sSet |·|CW

−−−→ CW ↪→ Top.

Remark 2.25 (Geometric realization and limits). The geometric realization functor sSet→
Top, in general, preserves equalizers, see [13]. Given simplicial setX and Y , then |X×Y |
is canonically homeomorphic to Z := (|X|× |Y |)C , where Z has underlying set |X|× |Y |
and A ⊆ Z is closed if and only if A∩K is closed in K for every compact subspace K of
|X|× |Y |. When either X or Y is locally finite or has only countably many nondegener-
ate simplices, then the canonical continuous map Z → |X| × |Y | is a homeomorphism.
This is due to [8, Prop. A.15]. Here a simplicial set X is called locally finite, when
for all 0-simplices v ∈ X0 there exist only finitely many non-degenerate simplices of X
having v as a vertex. A locally finite simplicial set has a locally finite realization as
a CW-complex. Locally finite CW-complexes are precisely those with locally compact
underlying topological space. So, for any simplicial set X we have that |X| is locally
compact if and only if X is locally finite.

Proposition 2.26. The geometric realization sSet → Top is a faithful, conservative
functor.

11
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Proof. Given a simplicial set X. We prove that uX : X → Sing(|X|) is a monomorphism
by appealing to proposition 2.11 c). Let σ, τ ∈ Xnd

n for n ≥ 0 such that uX(σ) =
uY (ρ). By remark 2.24 a), we immediately get that |Φρ| = |Φτ |. But |Φρ| and |Φτ | are
components of the map Φ from diagram (5) and therefore σ = τ . Now suppose for the
sake of contradiction, there exists g : |∆n−1| → |X| and 0 ≤ i ≤ n − 1 with si(g) =
uX(σ) ∈ Singn(|X|). Recall the terminology 2.1, where we defined σi : [n] → [n − 1].
Then g ◦ |σi| = |σ| : |∆n| → |X| by definition of the functor Sing(−). In particular, since

|σi| is surjective, g factors as composition |∆n−1| g′−→ |skn(X)| ↪→ |X| for some continuous
g′. Then g′ ◦ |σi| = |Φσ| : |∆n| → |skn(X)| by remark 2.24. But in view of diagram (5)
and the comments below, |Φσ| is injective on the interior of |∆n|, whereas |σi| collapses
|∆n| to its i-th face. This contradiction implies that uX(σ) is nondegenerate. Hence uX
is a monomorphism by proposition 2.11 c). Now given two morphisms of simplicial sets
f, g : X → Y such that |f | = |g|. Then uY ◦ f = |f |# ◦ uX = |g|# ◦ uX = uY ◦ g. So,
because uX is a monomorphism, we conclude f = g, i.e. | · | : sSet → Top is faithful.
Faithful functors reflect both epi- and monomorphisms, so the proposition follows from
remark 2.1.

Remark 2.27. Given a monomorphisms f : X → Y of simplicial sets. Then f factors as
X → f(X) ↪→ Y , where the first map is an isomorphism and |f(X)|CW is a subcomplex
of |Y |CW. In particular, |f | is a closed embedding.

2.5. Discrete simplicial sets

Construction 2.28 (The constant simplicial object functor). For each set F we define
the constant simplicial set with value F , denoted F , to be the simplicial set with F n = F
for all n ≥ 0 and di : F n+1 → F n, si : F n → F n+1 the identity for all i ∈ [n]. We
define the constant simplicial object functor · : Set → sSet by assigning to each set
F the constant simplicial set F and assigning to any map g : F → G the unique map
g : F → G with g

0
= g (This forces g

n
= g for all n ≥ 0 by the simplicial identities).

Definition 2.29 (The evaluation functor). For each nonnegative integer n we define
the nth-evaluation functor by

evn : sSet→ Set, X 7→ Xn, and (f : X → Y ) 7→ (fn : Xn → Yn)

Further, we let sSet≤n denote the full subcategeory of sSet consisting of simplicial sets
of dimension ≤ n. A simplicial set of dimension ≤ 0 will be called discrete.

Proposition 2.30. Given a simplicial complex X and a set F . Then the map

ηF,X : HomsSet(F ,X)→ HomSet(F, ev0(X)), f 7→ ev0(f)

is a bijection and ηF,X is natural in F and X. In particular, · is left adjoint to ev0.
Further, the functor · : Set → sSet is fully faithful and has essential image sSet≤0.
Moreover, ev 0 ◦ · = idSet and the composition · ◦ ev 0|sSet≤0

is naturally isomorphic to
idsSet≤0

. In particular, ev 0 restricts to an equivalence of categories sSet≤0 → Set.

Proof. See [10, Subsection 00FQ].
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2.6. Connectivity

Definition 2.31 (Summand, connectivity, connected component). Given a simplicial
set X. We say that a simplicial subset Y of X is a summand of X if there exists another
simplicial subset Y ′ of X such that the canonical map Y

∐
Y ′ → X is an isomorphism.

We say that X is connected if X is nonempty and every summand Y ⊆ X is either
empty or coincides with X. A simplicial subset Y of X is called a connected component
of X if Y is a summand of X and Y is a connected simplicial set.

Remark 2.32 (Alternative characterization of summands). Let X be a simplicial set and
Y a simplicial subset of X. If Y is a summand of X, then there exists a unique simplicial
subset Y ′ of X such that the canonical map Y

∐
Y ′ → X is an isomorphism: For each

n ≥ 0 we have Y ′
n = Xn \Yn. Consequently, Y is a summand of X if and only if the face

and degeneracy maps of X preserve the subsets Xn \ Yn.

Example 2.33. Given a set I, then set of connected components of the simplicial set I
is given by {{i} ⊆ I}i∈I .

Remark 2.34. It follows from remark 2.32 that collection of summands of a fixed sim-
plicial set X is closed under intersections and unions. Further, if Y is a summand of X
and Y ′ is a summand of Y , then Y ′ is a summand of X.

Remark 2.35. Given a morphism of simplicial sets f : X → Y and simplicial subsets
Y ′ ⊆ Y , X ′ ⊆ X. If Y ′ is a summand of Y then f−1(Y ) is a summand of X. If X ′ is
connected, then f(X ′) is connected.

Proposition 2.36. [10, Proposition 00GG] Let f : X → Y a morphism of simplicial
sets and X ′ ⊆ Y a simplicial subset of X, which is connected. Then there exists a unique
connected component Y ′ of Y such that f(X) ⊆ Y ′.

The next assertion follows from proposition 2.36 because ∆n defines a connected sim-
plicial set for all n ≥ 0.

Proposition 2.37. For any simplicial set X the canonical map from the disjoint union
of all connected components of X to X is an isomorphism.

Definition 2.38 (Component map). Given a simplicial set X and a set I. A morphism
νX : X → I is said to be a component map of X, if for every set J

HomSet(I, J) −→ HomsSet(I, J)
ν∗X−→ HomsSet(X, J)

is a bijection, where ν∗X denotes pre-composition by νX and the first map is the appli-
cation of the constant simplicial object functor.

Remark. By proposition 2.30 the constant simplical object functor is fully-faithful, so,
in situation of definition 2.38 νX is component map if and only if precomposition with

νx defines a bijection HomsSet(I, J)
ν∗X−→ HomsSet(X, J) for all sets J .
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Construction 2.39 (The functor π0). For any simplicial set X define π0(X) as the set
of connected components of X. By proposition 2.36 for every n-simplex σ of X there
exists a unique component X ′ ⊆ X of X which contains σ. The construction σ → X ′

determines a map νX : X → π0(X) and this map will be a component map of X, see
[10, Proposition 00GQ]. So, by the universal property characterization of adjunction
[12, Prop. 2.10], π0 is turned into a left-adjoint of the constant simplicial set functor by
declaring π0(f) to be unique map with π0(f) ◦ νX = νY ◦ f for every f : X → Y .

The following two facts are now straightforward to check.

Remark. Let X, Y be simplicial sets. Firstly, For f : X → Y a morphism of simplicial
sets π0(f) sends a connected component of X to the unique connected component of Y
that contains X. Secondly, the map, which sends a component of X to the set of its
connected components, determines a bijection from the set of components of X to the
power set of the set of connected components of X.

Definition 2.40 (The category of directed graphs). A directed graph G is a tuple
(Vert(G),Edges(G), s, t), where Vert(G) and Edges(G) are sets, whose elements are ref-
ered to as vertices and edges, respectively. s, t : Edges(G)→ Vert(G) are functions as-
signing to each edge e ∈ Edges(G) its source s(e) ∈ Vert(G) and target t(e) ∈ Edges(G).
For two directed graphs G,G′ a morphism G→ G′ is a function Edges(G)⊔Vert(G)→
Edges(G′) ⊔ Vert(G′) satisfying

(I) f(v) ∈ Vert(G′) for all v ∈ Vert(G).

(II) For e ∈ Edges(G), if f(e) ∈ Edges(G), then s(f(e)) = f(s(e)) and t(f(e)) =
f(t(e)), else f(e) = f(s(e)) = f(t(e)).

The category of directed graphs will be denoted by Graph.

Construction 2.41 (The Graph functor). To every simplicial set X we assign a graph
Graph(X) by setting Vert(Graph(X)) = s0(X0), Edges(Graph(X)) = Xnd

1 , s = s0 ◦ d1
and t = s0◦d0. Then X1 = Vert(Graph(X))⊔Edges(Graph(X)) and for every morphism
of simplicial sets f : X → Y we let Graph(f) be the morphism Graph(X)→ Graph(Y )
given by f1 : X1 → Y1.

Proposition 2.42. [10, Proposition 001N] The functor Graph : sSet→ Graph induces
an equivalence of categories from the full subcategory sSet≤1 ⊂ sSet of simplicial sets
of dimension ≤ 1 to the category Graph.

Construction 2.43 (π0 factors through the graph functor). [10, Variant 00GV] Let
π0(Graph(X)) denote the components of Graph(X). Given σ ∈ Xn. Then there exists
a unique F (σ) ∈ π0(Graph(X)) with σ(0) ∈ Vert(F (σ)) and then automatically σ(i) ∈
Vert(F (σ)) for all i ∈ [n]. Hence, the construction σ 7→ F (σ) induces a map of simplicial
sets X → π0(Graph(X)). This map is a component map of X.

Proposition 2.44 (π0 factors through geometric realization). [10, Corollary 00H6]
Given a simplicial set X. Y ′ ⊆ Y is a summand of X if and only if |Y ′| is a sum-
mand of |X|. Let us denote by π0 : Top → Set the functor that assign to a topological
space is path-components. Then the map X → π0(|X|) sending a simplex σ ∈ Xn to the
path-component containing |σ| is a component map of X.
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2.7. Homotopy and homology groups of simplicial sets

Definition 2.45 (Tuples of simplicial sets and slice categories). Let k be a nonnegative
integer, X a simplicial set and S a topological space.

1. We denote by sSet/X the slice category of sSet over X and similarly by Top/S
the category of spaces over S. The morphisms in these categories are called fiber
preserving.

2. We define sSet(k) as the category whose objects are k-tuples of simplicial sets
(X1, . . . , Xk) together with monomorphisms Xk ↪→ Xk−1 ↪→ · · · ↪→ X2 ↪→ X1. The
morphisms in sSet(k) are given by filtration preserving maps.

3. We define sSet∗(k) as the full subcategory of sSet(k + 1) consisting of pairs
(X1, . . . , Xk+1) with Xk+1 a vertex of X, called the base point.

Clearly, we can make analogous definitions for Top(k),CW(k) and Top∗(k),CW∗(k)
by replacing the word monomorphism with embedding/inclusion of a subcomplex, re-
spectively. We denote sSet(1) = sSet and sSet∗ = sSet∗(1).

Proposition/Definition 2.46. Given a simplicial set X, we define the chain complex
C∆(X) ∈ Ch(Ab) and the normalized chain complex CCW(X) ∈ Ch(Ab) by definining
C∆

n (X) = Z{Xn} and CCW
n (X) = Z{Xnd

n } for all n ≥ 0 and C∆
n (X) = CCW

n (X) = 0 for
n < 0. For n > 0 and σ ∈ Xn and τ ∈ Xnd

n we define

∂n(σ) =
n∑

i=0

(−1)idi(σ) and ∂n(τ) =
n∑

i=0

di(σ) ·

{
0 if di(σ) is degenerate,

(−1)i else.

For (X,A) ∈ sSet(2) we set C∆(X,A) = C∆(X)/C∆(A) and CCW = CCW/CCW(A).
Further, we define C(X,A) = C∆(Sing(|X|), Sing(|A|)).
In this way we obtain three functors C∆, CCW, C : sSet(2)→ Ch(Ab) In the first to

cases, we assign to f : (X,A) → (Y,B) the chain map f# that on simplices is given by
f#(σ) = f(σ). We view the third functor, as a composition of functors.

Proof. That these are indeed chain complexes follows from the simplicial identity (1).

Proposition/Definition 2.47. [8, Theorem 2.35] Given a pair of simplicial sets (X,A).
Then CCW(|X|CW, |A|CW) = CCW(X,A) and C(|X|, |A|) = C(X,A). Further, the
canonical natural chain map C∆(X,A) ↪→ C(X,A) induce an isomorphism on homol-
ogy. The canonical natural map of graded abelian groups

H∗(C
CW(X,A))→ H∗(C

∆(X,A)), [σ] 7→ [σ]

is an isomorphism. Let Ab• denote the category of graded abelian groups. We obtain
functors H∗ : sSet(2) → Ab• by composing C,CCW or C∆ with the homology functor
Ch(Ab)→ Ab•. These three functors are naturally isomorphic and are each referred to
as the homology functor.
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Definition 2.48 (Homotopy groups). We define the homotopy group functors as the
following compositions

π1 : sSet
∗(k)

|·|−→ Top∗(k)
π1−→ Grp and πn : sSet∗(k)

|·|−→ Top∗(k)
πn−→ Ab

for any n ≥ 2 and k = 1, 2.

For any setM let F (M) denote the free group onM . Throughout this whole bachelor
thesis, we will denote the unit of any group as 1.

Construction/Proposition 2.49 (Intrinsic discription of π1). Given Y ∈ sSet∗ with
base point v ∈ Y0. Let X be the connected component of Y containing v. Let Γ ∈ Graph
be a spanning tree in Graph(X). For any e ∈ Edges(Graph(X))\Edges(Γ) choose a loop
γe in |X| based at v, which is contained in |Γ| ∪ |e| and traverses |e| exactly once and
from |e(0)| to |e(1)|. Then

a : F (Edges(Graph(X)) \ Edges(Γ))→ π1(Y, x), e 7→ [γe]

is surjective with kernel the normal closure of the image of

b : F (Xnd
2 )→ F (X1)→ F (Edges(Graph(X)) \ Edges(Γ)),

where the left map is defined by σ 7→ d0(σ)d1(σ)
−1d2(σ) and the right map by

e 7→

{
1, if e is degenerate or e ∈ Edges(Γ)

e, else.

Proof. Because attaching cells of dimension ≥ 3 has no effects on the fundamental group,
we may assume that X is two dimensional. Further, we might assume that Edges(Γ) = ∅
by collapsing the contractible subcomplex |Γ| of |X|CW to |v|. Now, since |Γ| = |v| is
a spanning tree in sk1(|X|CW), the CW-complex |X|CW is given by a wedge of circles,
one for each e ∈ Edges(Graph(X)), together with a collection of two-dimensional cells
being attached to that wedge. Since two-dimensional cells are simply-connected every
path in |X| is homotopic to a path contained in |sk1(X)|. The map a is an isomorphism,
when Xnd

2 = ∅ by the Seifert-van-Kampen theorem, so surjectivity is proven. By simply-
connectedness of two-dimensional cells, a path that traverses the boundary of a two-cell
is trivial in the fundamental group of |X|, so the kernel of a is at least as big as what
we are claiming. Now for the converse, let e ∈ Edges(Graph(X)) with γe nullhomotopic.
The image of the corresponding homotopy contains a finite number of 2-cells of |X|CW.
Hence we might assume that X is finite. We proceed by induction on the elements of
Xnd

2 , where the case Xnd
2 = ∅ is already settled. But, by [9, Prop. 10.13], the effect of

attaching another 2-simplex σ ∈ Xnd
n is exactly adding the relation b(σ) to a presentation

of π(|X|), which proves the proposition.
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3. Covering Space Projections and Simplicial Sets

Proposition/Definition 3.1. [10, Proposition 021M] Let p : Z → X be a morphism
of simplicial sets. Then the following are equivalent:

a) For every n ≥ 0 and σ : ∆n → X the canonical map p′ : ∆n ×X Z → ∆n restricts
to an isomorphism on each connected component.

b) Given n,m ≥ 0 and α : ∆m → ∆n. For any σ : ∆n → X and τ̃ : ∆m → Z with
p ◦ τ̃ = σ ◦ α there is a unique σ̃ : ∆n → Z with σ̃ ◦ α = τ̃ and p(σ̃) = σ.

If any of these conditions apply, we call p a (simplicial) covering projection or (simpli-
cial) covering (space) map.

Proof. We assume a) and prove b). Given α : ∆m → ∆n, as well as σ : ∆n → X and
τ̃ : ∆m → Z with p(τ̃) = σ ◦ α. Let us denote the canonical map ∆n ×X Z → Z by
f . By the universal property of the pullback there is a unique τ ′ : ∆m → ∆n ×X Z
such that f(τ ′) = τ̃ and p′(τ ′) = α. Let us denote the inverse map of the restriction
of p′ to the connected component that contains τ ′ by p− : ∆n → ∆n ×X Z. Now given
any ρ : ∆n → Z with p(ρ) = σ and ρ ◦ α = τ̃ . Then there exists a unique map
ρ′ : ∆n → ∆n ×X Z such that p′ ◦ ρ′ = id∆n and f ◦ ρ′ = ρ. Since f ◦ ρ′ ◦ α = τ̃
and p′ ◦ ρ′ ◦ α = α, we have ρ′ ◦ α = τ ′. We see that both p−, ρ′ : ∆n → ∆n ×X ∆n

map into the same connected component of ∆n ×X Z and by uniqueness of inverses, we
conclude ρ′ = p−. Therefore ρ = f ◦ ρ′ = f ◦ p− =: σ̃. Since p ◦ f ◦ p− = σ ◦ p′ ◦ p− = σ
and f ◦ p− ◦ α = f ◦ τ ′ = τ̃ , the unique map such that p(σ̃) = σ and σ̃ ◦ α = τ̃ is
f ◦ ρ− = σ̃ : ∆n → Z.
Conversely, assume b) and let us prove a). Given σ : ∆n → X. Let F := Zn ×Xn {σ}
denote the collection of all n-simplices of σ̃ of Z with p(σ̃) = σ. It suffices to show that
the map h :

∐
σ̃∈F ∆n → ∆n ×X Z, which on every component is given by (id∆n , σ̃), is

an isomorphism of simplicial sets. We can check this levelwise, i.e. let m ≥ 0 and we
have to show hm is bijection. An m-simplex ρ of ∆n ×X Z is an m-simplex of ∆n, say
α : ∆m → ∆n, and a m-simplex of Z, say τ̃ : ∆m → Z, such that p ◦ τ̃ = σ ◦ α. An
m-simplex ρ̃ of

∐
σ̃∈T ∆n is given by an m-simplex of ∆n, say β : ∆m → ∆n, and σ̃ with

p(σ̃) = σ. Now hm(ρ̃) = ρ if and only if α = β and σ̃ ◦ α = τ̃ . So b) says that every
m-simplex of ∆m ×X Z has a unique preimage under hm.

3.1. Simplicial vs topological covering projections

Our goal now is to compare this definition of simplicial covering projection to the theory
of topological covering spaces.

Definition 3.2 (Topological covering space map). Let S, T be topological spaces.

a) Given a continuous map p : S → T . A subspace U ⊆ T is called evenly covered
by p if p|p−1(U) : p−1(U) → U restricts to a homeomorphism on every connected
component of p−1(U). Note that U is evenly covered by p if and only if there exists

17
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a discrete topological space F and a homeomorphism h : U × F → p−1(U) such
that

U × F p−1(U) S

U T

h

p
prU

⌟

commutes.

b) A continuous map p : S → T of topological spaces is called covering (space) map,
or a covering (space) projection onto T , if for any t ∈ T there exists an open
neighborhood U ⊆ T of t such that U is evenly covered by p.

c) A continuous map p : S → T is called a trivial covering space projection, if T is
evenly covered by p.

d) For p : S → T a covering space map and f ∈ Top/T . A morphism f → p in
Top/T is called a lift of f along p.

e) The full subcategory of Top/T consisting of covering space projections onto T is
denoted by Cov(T ).

f ) For a continuous map p : S → T the group of homeomorphisms of S that lift p
along p is denoted Aut(p) := AutTop/T (p). If p is a covering space projection, the
elements of Aut(p) are called deck transformations. In that case, p is called normal
if Aut(p) acts transitively on p−1({t}) for all t ∈ T .

Proposition 3.3. [8, sec. 1.3] Let S, T, S ′ be topological spaces with s0 ∈ S, t0 ∈ t and
s′0 ∈ S ′ points.

a) (Uniqueness of lifts:) Given a covering map p : S → T and a continuous map
f : S ′ → T . If S ′ is connected than two lifts of f agree if they agree on a point.

b) (Lifting criterion:) Suppose p : (S, s0) → (T, t0) is a covering map. For any
f : (S ′, s′0) → (T, t0) with S ′ connected and locally path-connected, there exists a
lift g : (S ′, s′0)→ (S, s0) of f if and only if f∗(π1(S

′, s′0)) ⊆ p∗(π1(S, s0)).

c) Suppose p : (S, s0) → (T, t0) is a normal covering map. For γ : (I, ∂I) → (T, t0)
there is an unique g ∈ Aut(p) such that the unique γ̃ : (I, 0)→ (S, s0) lifting γ along
p has endpoint g(s0). The assignment [γ] 7→ g gives a well-defined homomorphism
Lp,s0 : π1(X, t0) → Aut(p). Lp,s0 has kernel im(π1(p, s0)). When S is connected,
then Lp,s0 is surjective.

Corollary 3.4. Let S, T be topological spaces and p : S → T a covering space projection.
If T is simply-connected and locally path-connected then p is trivial.

18
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Proof. We assume that S is connected, in particular, S ̸= ∅, and have to prove that
p is a homeomorphism. So, let s0 ∈ S and t0 := p(s0). Applying the lifting criterion
3.3 b) to the covering space map p : (S, s0) → (T, t0) and the continuous map idT :
(T, t0)→ (T, t0) we obtain a continuous map g : (T, t0)→ (S, s0) with p ◦ g = idT . Now
g ◦ p : S → S lifts p : S → T along p : S → T and has g ◦ p(s0) = s0. The identity
id : S → S has the same properties, so by proposition 3.3a) we have g ◦ p = idS. p is
surjective because the cardinality of the fiber p−1(x) is constant on any path-component
of T . Therefore, g = p−1.

Lemma 3.5. Let p : S → T and f : T ′ → T be continuous maps of topological spaces.
Let p′ : S ′ := S ×T T

′ → T ′, f ′ : S ′ → S denote the canonical maps. Let Bp,f denote the
group homomorphism Aut(p)→ Aut(p′), g 7→ g×T idT ′. If U ⊆ T is evenly covered by p,
then f−1(U) ⊆ T ′ is evenly covered by p′. In particular, if p is a (trivial) covering space
projection, then so is p′.
From now on assume that p is a covering space projection and that there exists basepoints
s′0 ∈ S ′, s0 := f ′(s′0), t

′
0 := p′(s′0), t0 = p(s0). Then π1(p

′, s′0) is an isomorphism onto

π1(f, t
′
0)

−1(im π1(p, s0))) ⊆ π1(T
′, t′0).

If p is normal, then so is p′, and Lp′,s′0
= Bp,f◦Lp,s0◦π1(f, t′0). When S ′ is path-connected,

then
(im π1(f, t

′
0)) · (im π1(p, s0)) = π1(T, t0),

and the converse holds, when T ′ is path-connected. If S is connected, then Bp,f is
injective. If S ′ is connected and p is normal, then Bp,f is surjective.

Proof. Suppose U is evenly covered by p. Choose an open neighborhood U ⊆ S of p(t′)
that is evenly covered by p. Let F be a discrete topological space and h : U×F → p−1(U)
a homeomorphism such that

U × F p−1(U) S

U T

h

p
prU

⌟

commutes. We denote V := f−1(U) and first only consider the solid arrows in the
following cube:

p−1(U) S

U T

p′−1(V ) S ′

V T ′

p

f

f ′

p′

f |V

f ′|p′−1(V )
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Note that the four squares with solid boundaries in this diagram are pullback squares and
that the solid diagram commutes. By the universal property of the back-face pullback
square, we can fill in a unique dashed arrow such that the whole cube commutes. By the
pasting law for pullbacks, see [16], the left-side face of the commutative cube above is a
pullback square. So, applying its universal property we obtain the following commutative
diagram:

F × V F × U

p′−1(V ) p−1(U)

V U
f |V

f ′|p′−1(V )

h

idF×f |V

prV ∃! prU

Its straightforward to check that in this diagram the outer square is a pullback square.
So, again by the pasting law for pullbacks, the upper square is a pullback square, too.
Hence the map F × V → p′−1(V ) is the pullback of a homeomorphism and therefore
itself a homeomorphism by [16], i.e. V is evenly covered by p′.
Throughout all remaining parts of the proof we will assume that p is a covering space

projection.
Since p′ is a covering map, π1(p

′, s′0) is injective. Because π1(f) ◦ π1(p′) = π1(p) ◦
π1(f

′), the image of π1(p
′, s′0) is contained in π1(f, t0)

−1(im π1(p, s0))). To see the reverse
inclusion, let γ : (I, ∂I)→ (T ′, t′0) be a loop such that there exists a path γ̃ : (I, ∂I)→
(S, s0) with f ◦ γ = p ◦ γ̃. By proposition 3.3 b) there exists a unique map γ̃′ : (I, 0)→
(S ′, s′0) with p′ ◦ γ̃′ = γ. Both paths f ′γ̃′ and γ̃ start at s0 and lift fγ. So, by 3.3 a),
f ′γ̃′(1) = γ̃(1) = s0. Since p

′(γ̃′(1)) = γ(1) = t′0 = p′(s′0) and f
′(γ̃′(1)) = s0 = f ′(s′0) we

obtain γ̃′(1) = s′0 by the universal property of the pullback. Therefore [γ̃] ∈ π1(S ′, s′0) is
a preimage of γ under π1(p

′).
Suppose p is normal and let s′, s′′ ∈ S ′ with p′(s′) = p′(s′′). Then pf ′(s′) = pf ′(s′′) and
therefore there exists g ∈ Aut(p) with f ′(s′) = gf ′(s′′). Let g′ := g ×T id′

T ∈ Aut(p′).
Then p(g′(s′′)) = p(s′′) = p(s′) and f ′(g′(s′′)) = gf ′(s′′) = f ′(s′). So by the universal
property of the pullback g′(s′′) = s′, i.e. p′ is normal.
Again suppose p is normal and take γ′ : (I, ∂I)→ (T ′, t′0). Let γ̃

′ : (I, 0)→ (S ′, s′0) be a
lift of γ′ along p′. Further, let γ̃ : (I, 0)→ (S, s0) be a lift of f ◦γ′ along p. Let g ∈ Aut(p)
with γ̃(1) = g(s0) and define g′ := Bp,f = g ×T idT ′ ∈ Aut(p′). Since both paths f ′ ◦ γ̃′
and γ̃ lift f◦γ′ and start at s0, they have the same endpoint, namely g(s0), by proposition
3.3 a). The equations f ′(γ̃′(1)) = g(s0) = f ′(g′(s′0)) and p

′(γ̃′(1)) = t′0 = p′(g′(s′0)) imply
γ̃′(1) = g′(s′0) by the universal property of the pullback. So, unraveling the definitions

Lp′,s′0
([γ′]) = g′ = Bp,f (g) = Bp,f ◦ Lp,s0([f ◦ γ′]) = Bp,f ◦ Lp,s0 ◦ π1(f, t′0)([γ′]).

Now we suppose that T ′ is path-connected and that (imπ1(f, t
′
0)) · (imπ1(p, s0)) =

π1(T, t0) holds. To prove that S ′ is path-connected, it suffices to find a path λ′ :
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(I, 0, 1) → (S ′, s′0, s
′′
0) for any s′′0 ∈ S ′ with p(s′′0) = t0, using that T ′ is path-connected

and p′ is a covering map. Let α : I → S be a path from f ′(s′0) = s0 to f
′(s′′0). By assump-

tion there exists λ : (I, ∂I)→ (T ′, t′0) and β : (I, ∂I)→ (S, s0) such that (f ◦ λ) ∗ (p ◦ β)
is path-homotopic to p ◦ γ. Hence, f ◦ λ is path-homotopic to p ◦ (γ ∗ β). By the
path-lifting property 3.3 b) there exist λ̃ : (I, 0) → (S, s0) with p ◦ λ̃ = f ◦ λ and, by
the homotopy lifting property 3.3 b), the homotopy f ◦ λ ≃ p ◦ (γ ∗ β) can be lifted
to a homotopy λ̃ ≃ γ ∗ β. Since the first homotopy fixes basepoints, the second must
too, by proposition 3.3 a). Therefore, λ̃(1) = (γ ∗ β)(1) = f ′(s′′0). By the universal
property of the pullback there exists λ′ : I → S ′ with p◦λ′ = λ and f ′ ◦λ′ = λ̃. Because
f ′(λ′(0)) = s0 = f ′(s′0), p

′(λ′(0)) = t′0 = p′(s′0), we have λ′(0) = s′0 by the universal
property of the pullback. The same reasoning gives λ′(1) = s′′0. So, λ′ is the required
path and S ′ is path-connected.
Now let us assume that S ′ is path-connected and take any γ : (I, ∂I) → (T, t0). By
the path-lifting property 3.3 b) there exists γ̃ : (I, 0) → (S, s0) with pγ̃ = γ. Since
pγ̃(1) = γ(1) = t0 = f(t′0), there exists (a unique) s′′0 ∈ S ′ with f ′(s′′0) = γ̃(1)
and p′(s′′0) = t′0. By assumption there exists a path α : (I, 0, 1) → (S ′, s′0, s

′′
0). De-

fine β := γ̃ ∗ (f ′ ◦ α) : (I, ∂I) → (S, s0). Then γ = p ◦ γ̃ = p ◦ (β ∗ (f ′ ◦ α)) =
(p ◦ β) ∗ (p ◦ f ′ ◦ α) = (p ◦ β) ∗ (f ◦ p′ ◦ α), i.e. [γ] = π1(p, s0)([β]) ∗ π1(f, t′0)([p′ ◦ α]), so,
(im π1(f, t

′
0)) · (im π1(p, s0)) = π1(T, t0).

Now suppose S is connected and let g ∈ G with idT ′ ×T g
′ = id′

S. Then g ◦ f ′ =
f ′ ◦ (idT ′ ×T g

′) = f ′, so g fixes s0 and therefore agrees with idS by proposition 3.3, i.e.
Bp,f is injective.
Suppose p is normal, S ′ is connected and let g′ ∈ Aut(p′). There exists g ∈ Aut(g)
with g(s0) = f ′(g′(s′0)). Both maps f ′ ◦ g′ and g ◦ f ′ lift f ◦ p′ along p and agree on
s′0. Hence, f ′ ◦ g′ = g ◦ f ′ by 3.3 a). But then p′ ◦ (g ×T idT ′) = p = p′ ◦ g′ and
f ′ ◦ (g ×T idT ′) = g ◦ f ′ = f ′ ◦ g′, so (g ×T idT ′) = g′ by the universal property of the
pullback. This implies that Bp,f is surjective.

Construction 3.6 (Neighborhoods in the geometric realization). Given a simplicial set
X, a subset A of |X| and a function ε :

⋃
n≥0X

nd
n → (0,∞), σ 7→ εσ. We construct,

by induction over the skeleta of X, an open neighborhood Nε(A) ⊆ |X| of A. Suppose
we have already constructed an open neighborhood Nn

ε (A) of A ∩ |skn(X)| in |skn(X)|,
starting with N0

ε (A) = A∩|sk0(X)|. Then we define Nn+1
ε (A) by specifying the preimage

of |Φσ| : ∆n+1 → |skn+1(X)| for all σ ∈ Xnd
n+1. |Φσ|−1(Nε(A)) shall be the union of two

parts: An open εσ neighborhood of |Φσ|−1(A) \ |∂∆n+1| in |∆n+1| \ |∂∆n+1| and

{t ·G+ (1− t) · x : x ∈ |σ|−1(Nn
ε (A)), t ∈ [0, εσ)},

where G is the barycenter of ∆n+1. Then we define Nε(A) :=
⋃

n≥0N
n
ε (A). This is an

open set in |X| because it preimage under each characteristic map of |X|CW is open,
further:

a) For A,B ⊆ |X| disjoint closed sets, Nε(A) and Nε(B) are disjoint for small enough
εσ’s, see [8, Prop. A.3].
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b) For A ⊆ |X| a simplicial subset, Nε(A) strongly deformation retracts onto A if
εσ < 1 for all σ ∈ Xnd

n , n > 0, see [8, Prop. A5].

c) For A ⊆ B ⊆ |X|, we have Nε(A) ⊆ Nε(B).

d) When A,B ⊆ X are simplicial subsets, then Nε(A) ∩Nε(B) = Nε(A ∩B).

Lemma 3.7. Given a morphism of simplicial sets f : X → Y , a subset A ⊆ X and
functions εX :

⋃
n≥0X

nd
n → (0,∞), σ 7→ εσ and εY :

⋃
n≥0 Y

nd
n → (0,∞), σ 7→ εσ such

that εf(σ) = εσ for all σ ∈
⋃

n≥0X
nd
n . Then |f |−1(Nε(A)) = Nε(|f |−1(A)).

Proof. For σ ∈ Xnd
n , |f | ◦ |σ| = |f ◦ σ| and so |σ|−1(|f |−1((Nε(A)))) = |f(σ)|−1(Nε(A)),

where the latter set has been specified inductively in construction 2.43 as exactly the
same set as |σ|−1(Nε(|f |−1(A))).

Theorem 3.8 (Topological vs. simplicial covering projections). [5, App. I. 3] For a
morphism p : Z → X of simplicial sets the following are equivalent:

a) |p| : |Z| → |X| is a covering space projection by definition 3.2.

b) p is a simplicial covering space projection by definition 3.1.

Proof. We assume that |p| is a covering space map and prove part a) of definition 3.1.
Let n ≥ 0, σ ∈ Xn and let p′ : ∆n×X Z → ∆n be the canonical map. Since ∆n is finite,
we can conclude from remark 2.25 that |p′| is the pullback of |p| along |σ|. By lemma 3.5
|p′| is a covering map. Since |∆n| is simply-connected and locally path-connected, |p′| is
a trivial covering space projection by corollary 3.4. So, |p′| is a homeomorphism when
restricted to any connected component. By 2.44, restriction to a connected component
commutes with geometric realization. So, the statement follows because the geometric
realization functor is conservative, as we have seen in 2.26.
Conversely, assume that b) holds and let us prove a). Let x ∈ |X|. Let n be the minimal
nonnegative integer such that there exists σ ∈ Xnd

n with x ∈ |σ|, i.e. (n, σ) is the unique
pair with x ∈ |σ|(|∆n| \ |∂∆n|).
Ad hoc definition: For any nondegenerate simplex σ : ∆n → X of a simplicial set, we
define eσ to be the open cell of |X|CW corresponding to σ.
By proposition 3.1 a), there exists a fiber preserving isomorphism h : ∆n×F → ∆n×XZ,
where F is a discrete simplicial set. Because F , ∆n are locally finite, |h| : |∆n| × |F | →
|∆n| ×|X| |Z| is a fiber-wise homeomorphism, using remark 2.25. Pulling |h| back along
the inclusion of B := |∆n| \ |∂∆n| into |∆n| yields that |h| : B × |F | → B ×|X| |Z| is a
fiber-wise homeomorphism. But |σ| restricted to B equals the inclusion of eσ into |X|,
therefore B×|X| |Z| and |p|−1(eσ) are fiber-wise homeomorphic. So, |p| restricted to any
connected component of |p|−1(eσ) induces a homeomorphism onto eσ.
Let U := Nε(eσ) for a constant 0 < ε < 1. By construction 3.6 U is an open neighborhood
of x in |X| and lemma 3.7 says that |p|−1(U) = Nε(|p|−1(eσ)) By construction 3.6
|p|−1(U) strongly deformation retracts onto |p|−1(eσ). Let σ̃ : ∆n → Z with p(σ̃) = σ. It
remains to be shown that |p| restricted to the unique connected component V of |p|−1(U)
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that contains eσ̃ is an isomorphism. For another σ̃2 ∈ Xn with p(σ̃2) = σ, we have that
Nε(eσ̃)∩Nε(eσ̃2) ̸= ∅ implies σ̃2 = σ̃, using that ε < 1. Hence V = Nε(eσ̃). Inspection of
the explicit formulas for Nε(eσ) and Nε(eσ̃) tells us that it suffices to prove the following:
For any τ ∈ Xnd

m with di(τ) = sI(σ) for some i ∈ [m] and I as in convention 2.12, there
exists a unique τ̃ ∈ Znd

m with di(τ̃) = sI(σ̃) and p(τ̃) = τ . But this proposition 3.1 b)
applied to τ and sI(σ̃) with α = δi : ∆

n → ∆m.

Theorem 3.9. Let X be a simplicial set, S a topological space and f : S → |X| be a
covering space projection. Then there exists a simplicial set Z together with morphisms
p : Z → X and uZ : Z → Sing(S), such that uZ exhibits S as a geometric realization of
Z with |f | = |p|.

Proof. We proceed by induction on skeleta. Let Z(−1) be the empty simplicial set and
p(−1) : Z(−1) → sk−1(X) and uZ(−1) : Z(−1) → Sing(f−1(|sk−1(X)|)) be empty maps.
Then uZ(−1) exhibits ∅ = f−1(|sk−1(X)|) as geometric realization of Z(−1) and |p(−1)| =
f |f−1(|sk−1(X)|) : f

−1(|sk−1(X)|)→ |sk−1(X)|.
Given n ≥ 0 and assume for all −1 ≤ m ≤ n−1 we have constructed simplicial sets Z(m)

together with morphisms p(m) : Z(m) → skm(X), uZ(m) : Z(m) → Sing(f−1(|skm(X)|))
such that

• uZ(m) exhibits f−1(|skm(X)|) as geometric realization of Z(m)

• |p(m)| equals f |f−1(|skm(X)|) as continous map f−1(|skm(X)|)→ |skm(X)|

• skm(Z
(n−1)) = Z(m) and p(n−1)|Z(m) = p(m), as well as, uZ(n−1)|Z(m) = uZ(m) .

Let σ : ∆n → X be an n-simplex. Let ϕσ : ∂∆n → skn−1(X) be the attaching map and
Φσ : ∆n → skn(X) be the characteristic map of σ, as defined in 2.17. We construct the
pullback of p(n−1) along ϕσ:

∂∆n ×skn−1(X) Z
n−1 Zn−1

∂∆n skn−1(X)

pn−1

ϕσ

ϕ′
σ

(p(n−1))′

⌟

By lemma 3.5 and corollary 3.4, the pullback of f along |σ| is a trivial covering space
projection, using that |∆n| is simply-connected and locally path-connected. Concretely,
there exists a set Fσ and family of continuous maps (|σ|′i : |∆n| → Z)i∈Fσ such that

∐
i∈Fσ
|∆n| S

|∆n| |X|

(|id∆n |)i∈Fσ

|σ|

f

(|σ|′i)i∈I

⌟
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is a pullback square. The outer square of the diagram∐
i∈Fσ
|∂∆n|

∐
i∈Fσ
|∆n| Z

|∂∆n| |∆n| |X|

(|id∆n |)i∈Fσ

|σ|

f

(|σ|′i)i∈I

⌟

(|id∂∆n |)i∈Fσ

⌟

and the outer square of the diagram

|∂∆n ×skn−1(X) Z
(n−1)| |Z(n−1)| S

|∂∆n| |skn−1(X)| |X|

|p(n−1)|

⌟

|ϕσ |

|ϕ′
σ |

|(p(n−1))′|

⌟

are the pullback square of the same diagram using remark 2.25, the fact that ∂∆n is
finite and the pasting law for pullbacks [16].
By proposition 2.44, restriction to connected components commutes with geometric re-
alization and by proposition 2.26 geometric realization is conservative. So, because
the same holds for (|id∂∆n|i∈Fσ) :

∐
i∈Fσ
|∂∆n| → |∂∆n|, (p(n−1))′ is an isomorphism of

simplicial sets, when restricted to any connected component of ∂∆n ×skn−1(X) Z
(n−1),

where the set of connected components of ∂∆n×skn−1(X)Z
(n−1) is in bijection to Fσ. Let

ρi,σ : ∂∆n → ∂∆n×skn−1(X) Z
(n−1) be the components of the isomorphism

∐
i∈Fσ

∂∆n →
∂∆n×skn−1(X)Z

(n−1) with (p(n−1))′ ◦ρi,σ = id∂∆n . Finally, we define Z(n) via the pushout∐
σ∈Xnd

n
i∈Fσ

∂∆n
∐

σ∈Xnd
n

i∈Fσ

∆n

Z(n−1) Z(n)

(ϕ′
σ◦ρi,σ) (Φ̃i,σ)

⌟

Further, let p(n) : Z(n) → skn(X) be the unique map with p(n) ◦ Φ̃i,σ = Φσ for all
σ ∈ Xnd

n , i ∈ Fσ and p(n)|Z(n−1) = p(n−1). Let uZ(n) : Z(n) → Sing(f−1(|skn(X)|)) be the
unique map such that uZ(n) |Z(n−1) = uZ(n−1) and such that for every σ ∈ Xnd

n , i ∈ Fσ the
composition

∆n Φ̃i,σ−−→ Z(n)
u
Z(n)−−−→ Sing(f−1(|skn(X)|))

equals the n-simplex |σ̃i| : |∆n| → f−1(|skn(X)|) of Sing(f−1(|skn(X)|)) under the
Yoneda embedding. Here |σ̃i| is unique continuous map such that the composition

|∆n| |σ̃i|−−→ f−1(|skn(X)|) ↪→ S equals |σ|′i. To see that the latter is well-defined note that
the composition

|∂∆n| |ϕ′
σ |◦|ρi,σ |−−−−−→ |Z(n−1)| ↪→ S
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equals |σ|′i||∂∆n|, by construction of ρi,σ. To see that uZ(n) exhibits f−1(|skn(X)|) as
geometric realization of Z(n) it suffices to prove that∐

σ∈Xnd
n

i∈Fσ

|∂∆n|
∐

σ∈Xnd
n

i∈Fσ

|∆n|

f−1(|skn−1(X)|) f−1(|skn(X)|)

(|σ̃i|)|ϕ′
σ |◦|ρi,σ |

is a pushout square. All spaces, which were mentioned in this proof, belong to the cat-
egory CGHaus of compactly generated Hausdorff spaces as this category contains all
covering spaces of its objects. In CGHaus/|X| there holds a fibered exponential law, see
[1, Thm. 3.5 (b)] or [15, Prop. 2.4]. Therefore, the pullback along f as an endofunctor
of compactly generated Hausdorff spaces over |X| preserves all colimits. The diagram
in consideration is obtained by pulling back a pushout square square along f . Namely
the pushout square for |skn(X)| that is provided by the skeletral filtration of the CW-
complex |X|. Since colimits in the category CGHaus/|X| are computed in CGHaus
by [14, Prop. 3.6], our diagram is a pushout diagram, at least in the category CGHaus.
But the inclusion CGHaus → Top admits a right adjoint, given by k-ification, and
therefore preservers all colimits.
It remains to be checked that |p(n)| = f |f−1(|skn(X)|). These maps agree on f−1(|skn−1(X)|)
by the induction hypothesis. Let σ ∈ Xnd

n , i ∈ Fσ and let ιX : |skn−1(X)| ↪→ |X|, ιS :
f−1(|skn(X)|) ↪→ S be the inclusions. We constructed the morphism uZn precisely such
that

∣∣Φ̃i,σ

∣∣ = |σ̃i|, so the last diagram and the equation

f ◦ ιS ◦ |σ̃i| = f ◦ |σ|′i = |σ| = ιX ◦ |Φσ| = ιX ◦ |p(n) ◦ Φ̃i,σ| = ιX ◦ |p(n)| ◦ |σ̃i|

imply f ◦ ιs = ιX ◦ p(n), which concludes the induction.

Define Z := colimn≥0Z
(n), let p : Z → X be the colimit of collection of maps Z(n) p(n)

−−→
skn(X) ↪→ X and let uZ : Z → Sing(S) be the colimit of the maps

Z(n)
u
Z(n)−−−→ Sing(f−1(|skn(X)|)→ Sing(S).

To see that uZ exhibits S as a geometric realization of Z it suffices to check that the
canonical map colimn≥0f

−1(|skn(X)|) → S is a homeomorphism. Again by the fibered
exponential law, in the category CGHaus the pullback of the colimit of the diagram

∅ ↪→ |sk0(X)| ↪→ · · · ↪→ |skn(X)| ↪→ . . . (6)

along f provides a colimit of the diagram (6) with every term pulled back along f
separately. Pulling back every term in the diagram 6 separately in Top yields

∅ ↪→ f−1(|sk0(X)|) ↪→ · · · ↪→ f−1(|skn(X)|) ↪→ · · · (7)
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Since CGHaus→ Top reflects limits and every f−1(|skn(X)|) has been shown to be a
compactly generated Hausdorff space, as it is a geometric realization of a simplicial set,
pulling back every term in the diagram (6) separately in CGHaus also yields diagram
(7). Because S is a compactly generated Hausdorff space and colimn≥0|skn(X)| = |X|,
we have that in both categories, Top and CGHaus, the pullback of the colimit of the
diagram (6) along f equals S. Putting all this together, S is the colimit of the diagram
(7) in the category CGHaus and therefore also in Top. So, uZ exhibits S as a geometric
realization of Z. Lastly, |p| and f agree because every point of S = |Z| is contained in
the geometric realization of |Z(n)| = f−1(|skn(X)|) for some n ≥ 0.

Lemma 3.10. For any diagram X
q−→ B

p←− Y in sSet with p a simplicial covering space
projection and any continuous map f : |X| → |Y | with |p| ◦f = |q|, there exists a unique
lift g : X → Y of q along p with |g| = f .

Proof. We first do the proof for simplices:

Claim 3.10.1. For any n ≥ 0 and σ : ∆n → X there exists a unique σ̃ : ∆n → Y such
that p ◦ σ̃ = q ◦ σ and f ◦ |σ| = |σ̃|.

Let p′ and σ′ be the canonical projections maps from the pullback ∆n ×B Y of the
diagram ∆n q◦σ−−→ B

p←− Y to ∆n and Y , respectively. By proposition 3.1 a), p′ is
an isomorphism restricted to any connected component and by proposition 2.44 this
also holds for |p′|. Because ∆n is finite, |∆n ×B Y | is the pullback of the diagram

|∆n| |q|◦|σ|−−−→ |X| |p|←− |Y | by remark 2.25. Hence, there exists a unique continuous map
λ : |∆n| → |∆n×B Y | such that |σ′| ◦ λ = f ◦ |σ| and |p′| ◦ λ = id|∆n|. We conclude from
the latter equality that there exists a unique s : ∆n → X ×B Y such that p′ ◦ s = id∆n

and |s| = λ. Now σ̃ := σ′ ◦ s satisfies

p ◦ σ̃ = ◦σ′ ◦ s = q ◦ σ ◦ p′ ◦ σ′ = q ◦ σ

and |σ̃| = |σ′ ◦ s| = |σ′| ◦ |s| = |σ′| ◦ λ = f ◦ |σ|. In fact, σ̃ is the unique morphism with
|σ̃| = f ◦ |σ| because the geometric realization functor is faithful by proposition 2.26.
This proves the claim.
For all n ≥ 0, define gn : Xn → Yn by mapping σ ∈ Xn, to the unique σ̃ constructed
in the above claim. Given any α : ∆m → ∆n for any m,n ≥ 0 and σ : ∆n → X. Then
σ̃ ◦ α satisfies the conditions in claim 3.10.1 applied to σ ◦ α : ∆m → X. By definition,
gm maps the simplex σ ◦ α to σ̃ ◦ α, i.e. gm(X(α)(σ)) = X(α)(gm(σ)) by the Yoneda
lemma. So, the components (gn)n≥0 assemble to a morphism g : X → Y .
g satisfies p ◦ g = q, because this holds on every simplex. Further, for every simplex
∆n → X of X we have |g| ◦ |σ| = |σ̃| = f ◦ |σ| and therefore f = |g| by proposition 2.23.
Finally, g is the unique map with |g| = f , because geometric realization is a faithful
functor by proposition 2.26.

Definition/Corollary 3.11. Let X be a simplicial set and let us define Cov(X) to be
the full subcategory of sSet/X consisting of covering projections. Then the geometric
realization functor induces an equivalence of categories Cov(X)→ Cov(|X|).
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3. Covering Space Projections and Simplicial Sets

Proof. First of all, the geometric realization of a simplicial covering projection is a
covering space projection by 3.8. The functor Cov(X)→ Cov(|X|), p 7→ |p| is full and
faithful by lemma 3.10 and essentially surjective by 3.9.

Corollary 3.12. Let f : (Y, y0)→ (B, b0) and p : (Y, x0)→ (B, b0) be morphism in the
category sSet∗ with Y connected and p a covering projection. Then there exists a unique
lift of f along p if and only if π1(f)(π1(X, x0)) ⊆ π1(p)(π1(Y, y0)).

Proof. This follows from lemma 3.10 and the corresponding statement for topological
spaces in proposition 3.3.

3.2. Normal coverings, chain complexes and classifying spaces

For any group G we denote the integral group ring on G by Z[G].

Construction 3.13. Given a simplicial set X and a subgroup G of Aut(X). Then both
chain complexes C∆(X) and CCW(X) defined in definition 2.46 become chain complexes
of left Z[G]-modules via defining g · σ = g(σ) for all simplices σ of X and extending
linearly.

Definition 3.14. Given a morphism of simplicial sets p : Z → X.
Define Aut(p) := AutsSet/X(p) to be the subgroup of Aut(Z) consisting of isomorphisms
of Z that lift p along p. For any n ≥ 0 and σ ∈ Xn, the group Aut(p) acts on the

connected components of the pullback ∆n ×X Z of ∆n σ−→ X
p←− Z, where g ∈ Aut(p)

acts by π0(id∆n ×X g).
When p is a covering projection, then the elements of Aut(p) are called deck transforma-
tions. In that case, we can identify the set {σ} ×Xn Zn, consisting of σ̃ ∈ Zn such that
p(σ̃) = σ, with the set of connected components of ∆n ×X Z. Explicitly, we identify σ̃
with the connected component of ∆n×X Z that contains the image of the map induced
by id∆n and σ̃. Under this identification g ∈ Aut(p) acts on {σ}×Xn Zn by g · σ̃ = g(σ̃).
We call a simplicial covering projection p normal, if the action defined above is tran-

sitive for all n ≥ 0 and σ ∈ Xn.

Lemma 3.15. For any covering projection p : Z → X of simplicial sets with Z con-
nected, the group Aut(p) acts freely on the connected components of the pullback of the

diagram ∆n σ−→ X
p←− Z, for any n ≥ 0 and σ ∈ Xn.

Proof. This follows from the uniqueness statement in corollary 3.12.

Lemma 3.16. A simplicial covering projection p : Z → X is normal if and only if
|p| : |Z| → |X| is a normal covering space projection. If Z is connected and z0 ∈ Z ,
then a simplicial covering projection p is normal if and only if im(π1(p, z0)) is a normal
subgroup π1(X, p(z0)).

Proof. Note that for a normal covering space projections f : S → T with S and T path-
connected, the deck-transformation group acts transitively on the connected components
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3. Covering Space Projections and Simplicial Sets

of the preimage of every evenly covered and connected subset of T . Because π0 commutes
with geometric realization, as we described in proposition 2.44, when |p| is normal, then
so is p. The converse direction follows because every x ∈ |Z| is contained in the image
of |σ̃| for some simplex σ̃ of Z. The last statement already holds on the level of spaces
by [8, prop. 1.39].

Proposition 3.17. Given a morphism of simplicial sets p : Z → X with Z connected.
Let n ≥ 0 and G := Aut(p). For any σ ∈ Xn choose a fixed σ̃ ∈ Zn with p(σ̃) = σ,
whenever such a lift exists. Define Bn := {σ̃}σ∈Xn , B

nd
n := {σ̃}σ∈Xnd

n
to be the collection

of the σ̃’s for σ iterating through Xn and Xnd
n , respectively.

When p is a normal covering projection, then the Z[G]-modules C∆
n (Z) and C

CW
n (Z)

are free with basis Bn and Bnd
n , respectively.

Proof. When p is a normal covering projection, then Aut(p) acts freely and transitively
on the set {σ} ×Xn Zn of τ ∈ Zn with p(τ) = σ, where g ∈ Aut(p) acts via g · τ = g(τ).
So, the statement follows from construction 3.13, because C∆(Z) and CCW(Z) are free
abelian groups with basis Zn and Znd

n , respectively.

Definition 3.18. Given a group G. We define a simplicial set EG via EGn =
∏n

i=0G
with di((g0, . . . , gn)) = (g0, . . . , ĝi, . . . , gn) and si(g0, . . . , gn) = (g0, . . . , gi, gi, . . . , gn) for
all 0 ≤ i ≤ n. Further, we define BG to be the simplicial set given by the nerve of the
category defined by the group G, i.e. (BG)0 only contains a tuple of length 0, denoted
( ), and (BG)n =

∏n
i=1G for n ≥ 1. Further, for (g1, . . . , gn) ∈ (BG)n by definition

di(g1, . . . , gn) = (g1, . . . , gigi+1, gi+2, . . . , gn) for 0 < i < n, d0(g1, . . . , gn) = (g2, . . . , gn),
dn(g1, . . . , gn) = (g1, . . . , gn−1) and si inserts 1 at the ith spot of (g1, . . . , gn). It is well
known that both assignments G 7→ EG and G 7→ BG define functors Grp→ sSet.

Proposition 3.19. Given a group G. Then

q : EG→ BG, (g0, . . . , gn) 7→ (g−1
0 g1, g

−1
1 · g2, g−1

2 g3, . . . , g
−1
n−1 · gn)

defines a normal covering space projection of simplicial sets with Aut(q) = G and |EG|
contractible.

Proof. G acts on EG from the left via

G× EG→ EG, g · (g0, . . . , gn) = (g · g0, g · g1, . . . , g · gn).

q is given by the composition EG → EG/G
h−→ BG, where the first map is the pro-

jection onto the orbit space and h is on representatives given by (g0, g1, . . . , gn) 7→
(g−1

0 g1, g
−1
1 g2, . . . , g

−1
n−1gn). h is an isomorphism of simplicial sets with inverse given by

mapping (g1, . . . , gn) to the equivalence class of

(1, g1, g1 · g2, g1 · g2 · g3, . . . , g1 · g2 · . . . gn).

|EG| is contractible and |EG| → |EG/G| a universal and therefore normal topological
covering space projection by [8, Exmp. 1B.7]. So, the same holds for q by theorem 3.8
and lemma 3.16.
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Corollary 3.20. Let (X, x0) ∈ sSet∗ be connected, G any group and f : X → BG a
morphism such that π1(f, x0) is surjective. Construct Z := EG ×BG X with canonical
projections p : Z → X and t : Z → EG.
Then Z is connected and p a normal covering projection. Further, the map Aut(q) →
Aut(p), g 7→ g×EG idX is a group isomorphism and im (π1(p, z0)) = ker π1(f, x0) for any
z0 ∈ Z with p(z0) = x0.

Proof. This follows from lemma 3.5 together with corollary 3.11 and lemma 3.16 because
π0 and π1 both factor through geometric realization.

Now the main idea for the first section of the next chapter is that any normal covering
projection p : Z → X with Z connected should arise by pulling back q : E(Aut(p)) →
B(Aut(p)) along a suitable chosen X → B(Aut(p)). We will, in fact, try to find an
algorithm that constructs the required map X → B(Aut(p)) from the knowledge of the
normal subgroup im(π1(p)) of π1(X, x0).
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4. Computation

4.1. Covering spaces

In this whole subsection 4.1 we let Z and X be connected simplicial sets and p : Z → X
a normal covering projection, where we denote G := Aut(p).
For the next construction, recall the notation and definition of vertices of simplices of
simplicial sets in definition 2.8. In the following, for σ = (g0, . . . , gn) ∈ (EG)n, we will
identify the ith vertex σ(i) of σ with the group element gi ∈ G.

Construction/Proposition 4.1. Let l : X0 → Z0 be a set function with p0 ◦ l = idX0.
Define f : Z → EG by sending σ ∈ Zn to (g0, . . . , gn) ∈ (EG)n, where gi ∈ G is the
unique deck-transformation such that g−1

i (σ(i)) = l(p(σ)(i)). Then f is a morphism

of simplicial sets and the composition Z
f−→ EG

q−→ BG factors uniquely as f ◦ p for
f : X → BG. Further, for any x0 ∈ X0 and z0 := l(x0), the sequence

0→ π1(Z, z0)
π1(p)−−−→ π1(X, x0)

π1(f)−−−→ π1(BG)→ 0

is exact. Moreover, X
p←− Z

f−→ EG satisfies the universal property of the pullback of

X
f−→ BG

q←− EG.

Proof. The gi’s in the definition of f exists uniquely because Aut(p) acts freely and
transitively on the fiber of p(σ)(i). Further, by the simplicial identity (1)

l(p(djσ(i))) =

{
l(p(σ)(i)) = g−1

i (σ(i)) = g−1
i (djσ(i)), for 0 ≤ i < j ≤ n,

l(p(σ)(i+ 1)) = g−1
i+1(σ(i+ 1)) = g−1

i+1(djσ(i)) for 0 ≤ j ≤ i ≤ n− 1

and therefore f(dj(σ)) = dj(f(σ)) for 0 ≤ j ≤ n.
Similarly, by the simplicial identity (2)

l(p(sjσ(i))) =

{
l(p(σ)(i)) = g−1

i (σ(i)) = g−1
i (sjσ(i)), for 0 ≤ i ≤ j ≤ n,

l(p(σ)(i− 1)) = g−1
i−1(σ(i− 1)) = g−1

i−1(sjσ(i)) for 0 ≤ j < i ≤ n+ 1

and therefore f(sj(σ)) = sj(f(σ)) for 0 ≤ j ≤ n. Hence, f defines a morphism of
simplicial sets. Moreover, g−1

i (σ(i)) = l(p(σ)(i)) implies (ggi)
−1(gσ(i)) = l(p(σ)(i)) =

l(p(gσ)(i)) and therefore f(gσ) = g · f(σ) for all g, σ. Hence q ◦ f is constant on the
fibers of p and therefore factors as f ◦ p for a unique f : X → BG.
Next, we take x0 ∈ X0 and set z0 := l(x0) to prove exactness of the given sequence of
groups. Since |p| is a covering map, π1(p, x0) is injective. We have

π1(f, x0) ◦ π1(p, z0) = π1(q, (1)) ◦ π1(f, z0) = 0,

because |EG| is contractible. Therefore im (π1(p, z0)) ⊆ kerπ1(f, x0).
For any g ∈ G we can find a path γ from |z0| to |g(z0)| in |Z| using that Z is connected.
The path |q| ◦ |f | ◦ γ represents g ∈ π1(BG), where we identify π1(BG) with G as in [8,
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Prop. 1.40]. Now |q| ◦ |f | ◦ γ = |f | ◦ |p| ◦ γ proves surjectivity of π1(f).
Next, take any loop γ in |X| based at |x0| such that |f | ◦ γ is null-homotopic. γ lifts to
a unique path γ̃ in |Z| starting at |z0|. γ̃ has endpoint |g(z0)| for a unique g ∈ Aut(p).
Since |f | ◦ γ̃ lifts the null-homotopic loop |f | ◦ γ along the covering map |q|, |f | ◦ γ̃
is a loop based at |(1)|, using the homotopy lifting property from proposition 3.3 b).
Since (1) = |f | ◦ γ̃(1) = f(g(z0)) = (g), we conclude g = 1, so [γ̃] ∈ π1(Z, l(x0)).
Because π1(p)([γ̃]) = [γ],we conclude kerπ1(f) ⊆ im π1(p), which concludes the proof of
exactness of the sequence in consideration.
For the last statement, let A be a simplicial set and α : A → X, β : A → EG be
morphisms such that f ◦ α = q ◦ β. We prove that there exists a unique morphism
t : A → Z with p ◦ t = α and f ◦ t = β. By passing to connected components (every
simplicial set is the coproduct of its connected components by proposition 2.37), we may
assume that A is connected. Because π1(f) ◦ π1(α) = π1(q) ◦ π1(β) = 0, since |EG| is
contractible, we have im(π1(α)) ⊆ kerπ1(f) = im π1(p).
Let a0 be 0-simplex of A. There exists a unique g ∈ G with β(a0) = (g). We conclude
from corollary 3.12, that there exists a morphism t : (A, a0)→ (Z, g · l(α(a0))) such that
p ◦ t = α. Now β : (A, a0)→ (EG, β(a0)) and f ◦ t : (A, a0)→ (EG, (g)) both lift f ◦ α
along q and therefore agree by the uniqueness assertion in corollary 3.12. Any other
morphism t with p ◦ t = α and f ◦ t = β must send a0 to a lift of α(a0). Because p is
normal, there exists g′ ∈ G with t(a0) = g′ · l(α(a0)). Now

(g′) = f(g′ · l(α(a0))) = ft0(a0) = β(a0) = (g)

implies g′ = g. So, both t, t : (A, a0) → (Z, g · l(α(a0))) lift α along p and therefore

agree by the uniqueness assertion in corollary 3.12. All in all, X
p←− Z

f−→ EG satisfies

the universal property of the pullback of X
f−→ BG

q←− EG.

Lemma 4.2. Let l : X0 → Z0 be a set function with p0 ◦ l = id and construct f and f
as in construction 4.1. Let n ≥ 2, σ ∈ Xn.
Define τ := d0(σ) and ρ := dn(σ). Let σ̃ ∈ Zn, as well as, τ̃ , ρ̃ ∈ Zn−1 such that
σ̃(0) = l(σ(0)), τ̃(0) = l(τ(0)), ρ̃(0) = l(ρ(0)) and p(σ̃) = σ, p(τ̃) = τ , p(ρ̃) = ρ.
Then for i = 0, . . . , n− 1

f(σ̃)(i) = f(ρ̃)(i) and f(σ̃)(n) = f(ρ̃)(n− 1) · (f(τ̃)(n− 2))−1 · f(τ̃)(n− 1). (8)

Moreover, f(σ) ∈ Gn can be obtained from f(ρ) ∈ Gn−1 by adding the (n− 1)th entry of
f(τ) at the nth spot.

Proof. Both dn(σ̃) and ρ̃ lift dn(σ) along ρ and have 0th-vertex l(σ(0)). Hence, they
agree by proposition 3.1 b). For i = 0, . . . , n− 1

σ̃(i) = dn(σ̃)(i) = ρ̃(i) = [f(ρ̃)(i)](l(ρ(i))) = [f(ρ̃)(i)](l(σ(i))), (9)

using the definition of f in the third equality. Because p is normal and p(τ̃) = p(d0(σ̃)),
there exists a unique g ∈ Aut(p) with d0(σ̃) = g(τ̃). For i = 1, . . . , n

σ̃(i) = d0(σ̃)(i− 1) = g(τ̃)(i− 1) = g(τ̃(i− 1)) = g([f(τ̃)(i− 1)](l(τ(i− 1))))

= [g ◦ f(τ̃)(i− 1)](l(σ(i))), (10)
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using the definition of f in the fourth equality.
For i = 0, . . . , n− 1, equation (9) implies by definition of f that f(σ̃)(i) = f(ρ̃)(i).

Because the action of Aut(p) is free on the fibers of p, the equation

[f(ρ̃)(n− 1)]l(σ(n− 1))
(9)
= σ̃(n− 1)

(10)
= [g ◦ f(τ̃)(n− 2)](l(σ(n− 1)))

implies g ◦ f(τ̃)(n − 2) = f(ρ̃)(n − 1). For i = n, equation (10) implies f(σ̃(n)) =
g ◦ f(τ̃)(n− 1) by definition of f . The combination of the previous two results yields

f(ρ̃)(n− 1) · (f(τ̃)(n− 2))−1 · f(τ̃)(n− 1) = g ◦ f(τ̃)(n− 1) = f(σ̃(n)).

This proves equation (8). By proposition 4.1 f(σ) = q(f(σ̃)), f(ρ̃) = q(f(ρ̃)) and
f(τ̃) = q(f(τ̃)). So the last statement of this lemma follows from the explicit form of q
in proposition 3.19 and the given computation of f(σ̃).

Recall the definition of Graph(X) in 2.41. From now on, throughout this subsection
4.1, Γ shall denote a subgraph of Graph(X), such that, when we consider Graph(X)
as an undirected graph with subgraph Γ, Γ is a spanning tree in Graph(X).

Lemma 4.3. There exists a set function l : X0 → Z0 with p0 ◦ l = idX0 such that for all
e ∈ Edges(Γ) and all ẽ ∈ Z1 the following holds: p(ẽ) = e and d0(ẽ) = l(d0(e)) implies
d1(ẽ) = l(d1(e)).

Proof. Start with any z0 ∈ Z0 and define x0 := p(z0). Now let x ∈ X0 be arbitrary.
Then there exist unique e0, . . . , ek ∈ Edges(Γ) with d0(e0) = x0, d1(ek) = x and d1(ei) =
d0(ei+1) for all i = 0, . . . , k − 1. Invoking proposition 3.1 b), we might define ẽ0 to be
the unique lift of e0 with d0(ẽ0) = z0 and proceed, inductively, to let ẽi be the unique
1-simplex of Z such that d0(ẽi) = d1(ẽi−1) and p(ẽi) = ei for i = 1, . . . , n. We define
l(x) := d1(ẽn). To see that this l satisfies the required property, note that for any edge
e ∈ Edges(Γ) the unique paths in Γ from x0 to d1(e) and to d0(e), respectively, only
differ by traversing e at the end.

From know on, throughout this subsection 4.1, l shall denote a function satisfying the
condition in lemma 4.3. Additionally, we fix a x0 ∈ X0 and set z0 := l(x0). Further, for
the remainder of this subsection 4.1, we define {ei} ⊆ Xnd

1 to be the set of nondegenerate
1-cells of X, which are not edges of Γ, i.e. Edges(Graph(X)) \ Edges(Γ) = {ei}.
Recall that in proposition 2.49 we have constructed a normal subgroup R of the free
group F ({ei}i∈I) and a group epimorphism α : F ({ei})→ π1(X, x0) with kernel R. For
the remainder of this subsection 4.1, choose a collection {ni} ⊆ F ({ei}) such that the
normal subgroup generated by {ni} ∪R in F ({ei}) equals N := α−1(π1(p)(π1(Z, z0))).
It is easy to imagine what is going on when Γ is contracted to a point. Then the
ei’s are given by the nondegenerate edges of X and form loops. The ni’s are elements
of π1(X, x0) represented by a finite concatenation of the loops ei, possibly traversed
backwards. We require that the normal subgroup generated by α({ni}) in π1(X, x0)
equals π1(p)(π1(Z, z0)).
Because p is a normal covering projection, there is homomorphism Lp,z0 : π1(X, x0) →
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G = Aut(p), which sends the equivalence class of γ : (I, ∂I)→ (|X|, |x0|) to the unique
g ∈ Aut(p) such that the unique γ̃ : (I, 0)→ (|Z|, |z0|) lifting γ has endpoint |g(z0)|. By
proposition 3.3 c) and corollary 3.11 Lp,z0 is surjective and has kernel π1(p)(π1(Z, z0)).

Lemma 4.4. Let ei ∈ Edges(Graph(X)) \ Edges(Γ) and ẽ ∈ Znd
1 with p(ẽ) = ei and

ẽ(0) = l(ẽ(0)). Then

ẽ(1) = (Lp,z0 ◦ α(ei))(l(ei(1))) and therefore f(ẽ) = (1, Lp,z0 ◦ α(ei)).

Proof. Choose a loop γ : (I, ∂I) → (|X|, |x0|) such that γ(I) ⊆ |Γ| ∪ |ei| and such
that there are unique s, t ∈ I with γ(t) = |ei(0)| and γ(s) = |ei(1)|. Further arrange
that t < s and γ([t, s]) = |ei|. Then α(ei) = [γ] by the explicit construction of α in
proposition 2.49. Let γ̃ : (I, 0)→ (|Z|, |z0|) be a lift of γ along the covering map |p|.
Then g := Lp,z0◦α(ei) is the unique deck-transformation of p sending z0 to γ̃(1). Because
γ̃|[0,t] is a path only living on edges lifting edges of Γ and γ̃(0) = |l(x0)|, lemma 4.3 yields
γ̃(t) = |l(ei(0))| = |ẽ(0)|. We obtain γ̃([t, s]) = im(|ẽ|) because ẽ is the unique lift of e
with ẽ(0) = l(ei(0)). Therefore, γ̃(s) = |ẽ(1)|.
Because |g|−1(γ̃(1)) = |l(x0)| and |g|−1 ◦ γ̃|[s,1] lives on edges lifting edges of Γ, lemma
4.3 yields |g|−1 ◦ γ̃(s) = |l(ei(1))|. All in all, |ẽ(1)| = γ̃(s) = |g(l(ei(1)))| and hence
ẽ(1) = g(l(ei(1))), which is what we wanted to prove.

Corollary 4.5. The map f : X → BG satisfies: f(v) = () for all v ∈ X0 and

f(e) =

{
(1), e ∈ Edges(Γ),

((Lp,z0 ◦ α)(e)), else,

for all e ∈ Xnd
1 . For all n ≥ 2 and σ ∈ Xn, the tuple f(σ) is obtained from the (n− 1)-

tuple f(dn(σ)) by adding the (n− 1)th entry of f(d0(σ)) at the n
th spot.

Proof. BG has only one vertex, so the first statement is clear. Lemma 4.3 guaranties
that all e ∈ Edges(Γ) are send to (1). Lemma 4.4 treats the case of nondegenerate
1-simplices not contained in Edges(Γ). For higher dimensional simplices this is implied
by the last statement in lemma 4.2.

Lp,z0 ◦ α : F ({ei}) → G is surjective and has kernel N . Hence there is a unique

isomorphism ϕ : G′ := F ({ei}i∈I)/N → G such that the composition F ({ei})
β−→ G′ ϕ−→ G

equals Lp,z0 ◦ α. Here β denotes the canonical projection. By proposition 4.1, p is the
pullback of f along q, therefore pulling back the covering map q′ : EG′ → BG′ from
proposition 3.19 along (Bϕ)−1 ◦ f yields a morphism p′ : Z ′ → X, which is fiber-wise
isomorphic to p. Choose z′0 with p′(z′0) = x0. Because p is a covering projection,
also p′ : Z ′ → X is a covering projection. Moreover, p′ satisfies π1(p

′)(π1(Z
′, z′0)) =

π1(p)(π1(Z, z0)) = N . Because we are in the following only interested in the isomorphism
type of p : Z → X in the category of simplicial sets over X, we will assume from now
on that

G = G′ and ϕ = idG. So, consequently Lp,z0 ◦ α = β, q′ = q, Z ′ = Z and p′ = p. (11)
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Now suppose we are given N , but not p. Then we can still do construction 2.49 to obtain
π1(X) and define β as the quotient map π1(X)→ π1(X)/N . This is implemented in the
first part of algorithm 1. Corollary 4.5 immediately gives an algorithm to obtain f from
β. This is implement in the second part of algorithm 1. The third part of the algorithm
then constructs p : Z → X by pulling back q : EG→ BG along f .

Remark 4.6 (Implementing simplicial sets). Note that the given algorithm only “sees”
nondegenerate simplices, since this is the standard implementation of simplicial sets, as
in [17]. The used data structure implementing a finite simplicial set X consists of the set
of nondegenerate simplices of X, where for each nondegenerate simplex σ its dimension
n and its faces are specified. The ith face of σ is specified by a nondegenerate simplex ρ
of X and I ⊆ [n− 1] such that diσ = sIρ. Here we use the notation of convention 2.12.
That this data structure uniquely determines X is proven in proposition 2.11. Such a
data structure describes a simplicial set if and only if the simplicial identities (1), (2),
(3) are satisfied.

Remark 4.7. When we use algorithm 1 with N = 0 then we actually construct the
universal cover of X. The reason for requiring in algorithm 1 the index [π1(X) : N ]
to be finite is that skdim(X)(EG) and skdim(X)(BG) are only then finite simplicial sets.
Moreover, I want to remark that the image of π(p)(π1(Z, z0)) doesn’t change if we alter
x0 because this corresponds to conjugating the normal subgroup N . The same applies
if we do the construction of l in lemma 4.3 by starting with a different z0 ∈ Z0. This
justifies that we omit basepoints in algorithm 1.

Let n ≥ 0. By proposition 3.1 b) for any σ ∈ Xn there exists a unique σ̃ ∈ Zn with
p(σ̃) = σ and σ̃(0) = l(σ(0)). Because p is normal, the map

G×Xn → Zn, (g, σ) 7→ g(σ̃) (12)

is a bijection. By proposition 3.1 b) the map also restricts to a bijection G×Xnd
n → Znd

n .
The following lemma gives a precise answer to how this map fails to be natural.

Lemma 4.8. Let n ≥ 1, σ ∈ Xn, 0 ≤ i ≤ n and τ := di(σ). By proposition 3.1 b), there
is a unique σ̃ ∈ Zn with pσ̃ = σ and σ̃(0) = l(σ(0)), as well as, a unique τ̃ ∈ Zn−1 with
pτ̃ = τ and τ̃(0) = l(τ(0)). Then for any g ∈ G

di(g(σ̃)) = (g ◦ gi)(τ̃) with gi =

{
f(σ̃)(1), if i = 0,

1, else.
(13)

In the case n ≥ 2, we additionally define ρ := dn(σ) and λ := d0(ρ). By proposition
3.1 b), there is a unique ρ̃ ∈ Zn−1 with pρ̃ = ρ and ρ̃(0) = l(ρ(0)), as well as, a unique
λ̃ ∈ Zn−2 with pλ̃ = λ and λ̃(0) = l(λ(0)). Then d0(ρ̃) = g0(λ̃). Moreover, when ρ = s0ρ

′

for some ρ′ ∈ Xn−2, then g0 = 1.
For n = 1, we have

g0 =

{
β(σ), if σ is nondegenerate and σ ∈ Edges(Graph(X)) \ Edges(Γ),
1, else.
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Algorithm 1 Covering space for given normal subgroup of π1(X) with finite index

Require: X: Finite connected simplicial set,
{ei}1≤i≤m: X

nd
1 \ {e1, . . . , em} is set of edges of a spanning tree Γ in sk1(X),

{ni}: elements of F (e1, . . . , em) generatingN ◁ π1(X) with [π1(X) : N ] <∞.
(Here we identify π1(X) with a quotient of F (e1, . . . , em) via prop. 2.49.)

Ensure: G: π1(X)/N , p: Covering projection Z → X with im(π1(p)) = N ,

f : Morphism X → BG with π1(f) surjective and kerπ1(f) = N ,

f : Morphism Z → EG with X
p←− Z

f−→ EG the pullback of X
f−→ BG← EG

Part 1: Construction of a presentation of G

Define F := FreeGroup(e1, . . . , em).
rels := [ ] ▷ This empty list will contain relations s.t. F (e1, . . . , en)/rels = π1(X)
for σ ∈ Xnd

2 do
Define z := 1 ∈ F . ▷ This is the relation that σ adds to π1(X)
for i = 0, 1, 2 do

if diσ = ej for some j = 1, . . . ,m then

Set z = z ∗ (ej)(−1)i .
rels.append(z)

Define β : F → G := F/ < rels ∪ {n1, . . . , ns} > to be the canonical projection.

Part 2: Construction of f : X → BG

f(v) = ( ) ∈ BG0 for all v ∈ X0 ▷ The empty tuple shall be the unique vertex of BG
for e ∈ Xnd

1 do
if e = ej for some j = 1, . . . ,m then

f(e) = (β(ej))
else

f(e) = (1)
for n = 2, . . . , dimX do

for σ ∈ Xnd
n do

sI(τ) := d0(σ), sJ(ρ) := dn(σ) ▷ τ , ρ nondegenerate as in 2.12
f(σ) is the n-tuple obtained from the (n− 1)-tuple sJf(ρ) by adding the last
entry of sIf(τ) ∈ Gn−1 at the nth spot.

Part 3: Construction of the covering map

Construct the covering map q : skdimX(EG)→ skdimX(BG).

Obtain X
p←− Z

f−→ EG as the pullback of X
f−→ skdimX(BG)

q←− skdimX(EG)
return G, p, f , f
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Proof of lemma 4.8. For i > 0 taking the 0th-vertex of a simplex commutes with di. So,
we have τ(0) = σ(0) and therefore σ̃(0) = τ̃(0), as well as

di(g(σ̃))(0) = g(σ̃(0)) = g(τ̃)(0).

In conclusion, di(g(σ̃)) and g(τ̃) have the same 0th-vertex. As both of these simplices lift
diσ = τ along the simplicial covering map p and have the same 0th-vertex, they agree
by proposition 3.1 b).
On the other hand, τ(0) = di(σ)(0) = σ(1). Define g0 := f(σ̃)(1). Then, by definition
of f in construction 4.1, we have

σ̃(1) = g0(l(σ(1))) = g0(l(τ(0))) = g0(τ̃(0)). (14)

Both g ◦ g0(τ̃) and d0(g(σ̃)) lift τ = d0(σ) along the simplicial covering map p and have
the same 0th-vertex by the following equation:

d0(g(σ̃))(0) = g(σ̃(1))
(14)
= (g ◦ g0)(τ̃)(0)

Hence, d0(g(σ̃)) = (g ◦ g0)(τ̃) by proposition 3.1 b). This concludes the proof of the first
statement of this lemma.
Now assume we are in the situation described for the case n ≥ 2. The 0th vertex of d0(ρ̃)
equals ρ̃(1) = σ̃(1) and the 0th vertex of λ equals ρ(1) = σ(1). We have already seen
that σ̃(1) = g0(l(σ(1))). Putting these observations together we obtain

d0(ρ̃)(0) = σ̃(1) = g0(l(σ(1))) = g0(l(λ(0))) = g0(λ̃(0)) = g0(λ̃)(0).

Both d0(ρ̃) and g0(λ̃) lift d0(ρ) = λ along the simplicial covering map p and have the
same 0th-vertex, hence these simplices agree by proposition 3.1 b).

In the case ρ = s0ρ
′ for some ρ′ ∈ Xn−2, then σ(0) = σ(1) and σ̃(0) = ˜σ(1). Therefore

g0(l(σ(1))) = σ̃(1) = σ̃(0) = l(σ(0)) = l(σ(1)),

so g0 = 1 by lemma 3.15 applied to σ(1) ∈ X0.
Now assume n = 1. For σ ∈ Edges(Γ) we have f(σ̃) = (1, 1) because l was chosen to
satisfy the properties in 4.3. In the case that σ is nondegenerate and σ is not a edge
of Γ, we have computed f(σ̃) in lemma 4.4 to be (1, Lp,z0 ◦ α(σ)). But convention (11)
says Lp,z0 ◦α = β. By the already proven part of the lemma, g0 = f(σ̃)(1), which equals
Lp,z0 ◦ α(σ) = β(σ). The only remaining case is that σ is a degenerate 1-simplex and
then σ̃(1) = σ̃(0) by proposition 3.1 b). The equation σ̃(1) = σ̃(0) = l(σ(0)) implies by
the definition of f that f(σ̃)(1) = 1. But we have already seen that g0 = f(σ̃)(1).

For all n ≥ 0, the set of nondegenerate n-simplices of Z is in bijection to Xnd
n ×G by

(12). By lemma 4.8, the faces of a 1-simplex in Z are determined by, firstly, the faces
of its image under p in X and, secondly, β. Again by lemma 4.8, for n ≥ 2, the faces
of any n−simplex in Zn are determined by, firstly, the faces of its image in X under p,
secondly, G, and, thirdly, the faces of all simplices in Z of dimension < n. In this way
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we obtain an algorithm that computes Z in the sense of remark 4.6 by induction on n
from the knowledge of X, G and β. In algorithm 2 we record the pseudocode for this.
Instead of taking β and G as input, in algorithm 2, β and G are constructed from the
sets {ni} and {ei} as in the first part of (1).

Now suppose we are interested in the chain-complex CCW(Z) from construction 3.13.
We know for all n ≥ 0 from proposition 3.17 that the Z[G]-module CCW(X)n has basis
{σ̃}σ∈Xn , where pσ̃ = σ and σ̃(0) = l(σ(0)) for all σ ∈ Xn. So, to compute CCW(Z)
it suffices to give the matrices representing the boundary operators with respect to this
basis. We can read of the coefficients of d(σ̃) with respect to this basis from lemma 4.8,
provided that β, G and X is known. Again, we can compute β and G as in the first
part of algorithm 1 from the sets {ei} and {ni}. We obtain algorithm 3, which computes
CCW(Z), when X and the sets {ei} and {ni} are given.

Remark 4.9. The given algorithms 1, 2 and 3 require the user to compute a spanning
tree and to input the sets {ei}, {ni} depending on that tree. In some cases it might be
convenient for the user to provide the normal subgroup N ⊴ π1(X) by loops in the 1-
skeleton of the simplicial set X instead of computing Γ. For this purpose we can modify
the first part of these algorithms, by replacing them as in algorithm 4.
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Algorithm 2 Covering space for given normal subgroup of π1(X) with finite index

Require: X: Finite connected simplicial set,
{ei}1≤i≤m: X

nd
1 \ {e1, . . . , em} is set of edges of a spanning tree Γ in sk1(X),

{ni}: elements of F (e1, . . . , em) generatingN ◁ π1(X) with [π1(X) : N ] <∞.
(Here we identify π1(X) with a quotient of F (e1, . . . , em) via prop. 2.49.)

Ensure: p: Covering projection Z → X with im (π1(p)) = N

Part 1: Construction of a presentation of the group G

This is exactly the same as in algorithm 1.

Part 2: Construction of Z

For all v ∈ X0 and all g ∈ G define a 0-simplex g · ṽ ∈ Z0.
for e ∈ Xnd

1 and g ∈ G do
v := d0(e), w := d1(e)
if e = ej for some j = 1, . . . ,m then

Define a 1-simplex g · ẽ with d0(g · ẽ) = (g · β(ej)) · ṽ and d1(g · ẽ) = g · w̃.
else

Define a 1-simplex g · ẽ with d0(g · ẽ) = g · ṽ and d1(g · ẽ) = g · w̃.
for n = 2, . . . , dim(X) do

for σ ∈ Xnd
n and g ∈ G do

di(σ) = sIi(τi) for i = 0, . . . , n, d0(τn) = sJ(λ) ▷ τi, λ nondegenerate as in 2.12
if 0 /∈ In then

Obtain g0 ∈ G from d0(1 · τ̃n) = sJ(g0 · λ̃), which has already been set.
else

Set g0 := 1 ∈ G.
Define an n-simplex g · σ̃ with:
d0(σ̃) = sI0((g · g0) · τ0) and di(g · σ̃) = sIi(g · τi) for i = 1, . . . , n.

Define Z as the simplicial set with Znd
n = {g · σ̃ : g ∈ G, σ ∈ Xnd

n } for all n ≥ 0.
Define p : Z → X via g · σ̃ 7→ σ for all n ≥ 0, g ∈ G and σ ∈ Xnd

n .
return p
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Algorithm 3 Chain complex of covering space for given normal subgroup N of π1(X)

Require: X: connected simplicial set, Xnd
n = {σ(n)

1 , . . . , σ
(n)
mn} for all n ≤ dimX <∞

{ei}1≤i≤m: X
nd
1 \ {e1, . . . , em} is set of edges of a spanning tree Γ in sk1(X),

{ni}: set of elements of F (e1, . . . , em) generating N ◁ π1(X).

Ensure: {Mi}1≤i≤dim(X): Matrices representing the boundary operators of the Z[G]-
module chain complex CCW(Z) with respect to a basis as in proposition 3.17.
Here Z is a covering space of X with π1(Z) ∼= N and G := π1(X)/N .

Part 1: Construction of a presentation of G

This is exactly the same as part 1 in algorithm 1.

Part 2: Construction of CCW(Z)

R := Z[G]
deckTrnsf := {n : [ ] for n = 1, . . . , dim(X)} ▷ encodes the g0’s from algorithm 2
brdyComplx := {n :Mn := matrix(R,mn−1,mn) for n = 1, . . . , dimX} ▷ Mn := 0
for i = 1, . . . ,m1 do

σ
(0)
j := d0σ

(1)
i , σ

(0)
k := d1σ

(1)
i , M1[k, i]− = 1 ▷ Obtain list indices j, k

if σ
(1)
i = er for some r = 1, . . . ,m then
deckTrnsf[1].append(β(ej)); M1[j, i]+ = β(ej)

else
deckTrnsf[1].append(1); M1[j, i]+ = 1

for n = 2, . . . , dimX do
for i = 1, . . . ,mn do

for r = 1, . . . , n do
if drσ

(n)
i = σ

(n−1)
j is nondegenerate then

Mn[j, i]+ = (−1)r
dnσ

(n)
i = sI(σ

(s)
j ) ▷ Obtain degeneracies, dimension s and list index j of dnσ

(n)
i

if 0 ∈ I then
if d0(σ

(n)
i ) = σ

(n−1)
k is nondegenerate then

Mn[k, i]+ = 1
deckTrnsf[n].append(1)

else
g0 := deckTrnsf[s][j]; deckTrnsf[n].append(g0)

if d0(σ
(n)
i ) = σ

(n−1)
k is nondegenerate then

Mn[k, i]+ = g0

return brdyComplx
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Algorithm 4 Modification of the first parts of the algorithms 1, 2 and 3

Require: X: finite connected simplicial set,
{ni}0≤i<s: each ni a list of tuples (σi1 , ki1), . . . , (σiri , kiri ), where σij ∈ X

nd
1

and kij ∈ Z such that σ
ki1
i1
∗ · · · ∗ σ

kiri
iri

is forming a loop in sk1(X).

Ensure: . . .

Part 1: Construction of a presentation of G

Compute a spanning tree Γ in Graph(X).
F := FreeGroup(e1, . . . , em) for X

nd
1 \ Edges(Γ) = {e1, . . . , em}.

rels := [ ] ▷ This empty list will contain relations s.t. F (e1, . . . , en)/rels = π1(X)
for σ ∈ Xnd

2 do
Define z := 1 ∈ F ▷ This is the relation that σ adds to π1(X)
for i = 0, 1, 2 do

if diσ = ej for some j = 1, . . . ,m then

Set z = z ∗ (ej)(−1)i

rels.append(z)
for i = 0, . . . , s− 1: do

Ni := F.one()
for j = 1, . . . , ri: do

if σij = el for some l = 1, . . . ,m then

Set Ni = Ni ∗ e
kij
l .

Define β : F → G := F/ < rels ∪ {N1, . . . , Ns} > to be the projection.

. . .
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4.2. Combinatorial torsion of chain complexes

Definition 4.10 (Combinatorial torsion of a chain complex). Let F be a field or more
generally a principal ideal domain, d ∈ N>0, m0, . . . ,md ∈ N0 and C a chain complex of
F-vector spaces with

Ck =


0, if k < 0,

Fmk , if 0 ≤ k ≤ d, (we demand equality, not a mere isomorphism),

0, if k > d,

and boundary maps ∂k : Ck → Ck−1.
We will refer to the three properties that the chain complex C satisfies as bounded, finitely
generated and based (by the standard basis). Finitely generated will be abbreviated by
f.g. and refers to the chain groups being finite dimensional.
If C is not exact, we define τ(C) = 0 ∈ F. When C is acyclic we do the following. For

all 0 < k ≤ d + 1 choose a basis {b(k−1)
i }0≤i<rk−1

of im(∂k) ⊆ Ck−1 with rk−1 ∈ N0. For
every 0 < k ≤ d the sequence

0→ im(∂k+1)→ Ck
∂k−→ im(∂k)→ 0

is split exact, so there exist {b(k)i+rk
}0≤i<rk−1

in Ck = Fmk such that ∂kb
(k)
i+rk

= b
(k−1)
i

for 0 ≤ i < rk−1 and such that {b(k)i }0≤i<mk
is a basis of Ck = Fmk . We define the

(combinatorial) torsion of the chain complex C as

τ(C) :=
d∏

k=0

det(b
(k)
0 , . . . , b

(k)
mk−1)

(−1)k+1 ∈ F∗,

where (b
(k)
0 , . . . , b

(k)
mk−1) ∈ Matmk,mk

denotes the mk ×mk-matrix with i-th column given

by the column-vector b
(k)
i ∈ Fmk .

Remark 4.11. The definition of τ(C) in 4.10 is independent of the choice of the basis

{b(k−1)
i }0≤i<rk−1

of im(∂k) and the lifts {b(k)i+rk
}0≤i<rk−1

in Fmk for all 0 < k ≤ d. A proof
of this can be found in [20, lem. 1.3].

Proof of algorithm 5. We have to show for all 0 ≤ k ≤ d+1 that, firstly, the constructed
{b(k−1)

i }0≤i<rk−1
are a basis of im(∂k) and that, secondly, {b(k−1)

i }0≤i<mk−1
forms a basis of

Fmk . We prove this by induction on k, where the induction step is backwards from k to
k−1. Clearly, the statement holds for k = d+1. Let us therefore assume that 1 ≤ k ≤ d
and by induction hypothesis we may assume that {b(k)i }0≤i<rk is a basis of im(∂k+1) and

that {b(k)i }0≤i<mk
is a basis of Fk. We know that Ck decomposes as a direct sum of two

subspaces, where the first summand given by ker(∂k) = im(∂k+1) = span({b(k)i }0≤i<rk)

and the second summand is mapped isomorphically to im(∂k) by ∂k. Since {b(k)i }0≤i<mk

is a basis of Fmk , the second summand must be given by span(b
(k)
i : rk ≤ i < mk)
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Algorithm 5 Torsion of a bounded, f.g., based acyclic chain complex over a PID F
Require: C an acyclic, bounded, based and finitely generated chain complex over F.
Ensure: τ ∈ F∗ the combinatorial torsion of C.

1: rd := 0
2: Define {b(d)i }0≤i<md

to be the standard basis of Fd.
3: for k = d, d− 1, . . . , 1 do
4: rk−1 := mk − rk
5: b

(k−1)
i := ∂kb

(k)
i+rk

for 0 ≤ i < rk−1.

6: Extend {b(k−1)
i }0≤i<rk−1

to a basis {b(k)i }0≤i<mk−1
of Fmk−1 .

7: return τ :=
∏d−1

k=0 det(b0, . . . , bmk−1)
(−1)k+1

and therefore the collection {∂kb(k)i }rk≤i<mk
forms a basis of im(∂k) ⊆ Fmk−1 . But by

definition {∂kb(k)i }rk≤i<mk
= {b(k−1)

i }0≤i<rk−1
and any linearly independent subset can be

extended to a basis of Fmk .

Remark 4.12. When F ⊆ C we might realize line 6 of algorithm 5 by computing a basis
over F of the kernel of the adjoint (conjugate transpose) of the matrix

(b
(k−1)
0 , . . . , b

(k−1)
rk−1−1, 0, . . . , 0) ∈ Matmk−1,mk−1

(F).

This suggests that we could also give an algorithm for combinatorial torsion that only
talks about matrices and not about vectors.

Algorithm 6 Torsion of a bounded, f.g., based acyclic chain complex over F ⊆ C
Require: {D(k)}1≤k≤d.

D(k) ∈ Matmk−1,mk
(F) represents the boundary operator Ck → Ck−1 of a chain

complex C over F ⊆ C with respect to a distinguished basis. C is assumed
to be f.g., exact and bounded by 0 and d ∈ N.

Ensure: τ ∈ F∗ the combinatorial torsion of C.

Define rd := 0 and rd−1 := md.
Define K(d) ∈ Matmd,md

(F) to be the identity matrix.
for k = d, d− 2, . . . , 1 do

Define rk−2 := mk−1 − rk−1 ∈ Z.
Solve (D(k)K(k))† ·K(k−1) = 0 ∈ Matrk−1,rk−2

(F) for K(k−1) ∈ Matmk−1,rk−2
(F) such

that K(k−1) has full rank.
return τ :=

∏d
k=1 det(D

(k)K(k) | K(k−1))(−1)k .

Proof of algorithm 6. To see that algorithm 6 yields the correct number, we compare it
to algorithm 5. The translation goes as follows: The {b(k−1)

i }0≤i<rk−1
correspond to the
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columns of the matrix D(k)K(k). By construction and dimension reasons, the columns
of K(k−1) span the orthogonal complement of the image of D(k)K(k). So the columns
of K(k−1) correspond to the {b(k−1)

i }rk−1≤i<mk−1
, which explain how the formula for τ in

algorithm 6 arises from algorithm 5.

Remark 4.13. The advantage of algorithm 6 is that, if we use a matrix decomposition
of D(k)K(k) to solve for K(k−1), we can later use the same matrix decomposition to com-
pute the determinant. Say we have computed a LU -decomposition D(k)K(k) = PL(U

0
)

with P ∈ Matmk−1,mk−1
(F) a square permutation matrix, L ∈ Matmk−1,mk−1

(F) a lower
triangular matrix with every diagonal entry equal to 1 and U ∈ Matrk−1,rk−1

(F) an up-
per diagonal matrix, such that (U

0
) ∈ Matmk−1,rk−1

(F). Then (D(k)K(k))† = (U †|0)L†P T

and we see that K(k−1) is given by the last rk−2-columns of P (L†)−1, i.e. K(k−1) =

P (L†)−1
(

0
Irk−2

)
, where Irk−2

∈ Matrk−2,rk−2
(F) is the identity matrix and

(
0

Irk−2

)
∈

Matmk−1,rk−2
(F). Further,

det(D(k)K(k) | K(k−1)) = det

(
PL

(
U

0

)
| P (L†)−1

(
0

Irk−2

))
= sgn(P ) det

(
L

(
U

0

)
| (L†)−1

(
0

Irk−2

))
= sgn(P ) det

(
L

(
U 0
0 0

)
+ (L−1)†

(
0 0
0 Irk−2

))
The last formula would simplify a lot if L was unitary. This suggest that we might
use singular value decomposition for computing torsion of exact bounded f.g. chain
complexes over C.

Proof of algorithm 7. We extend the recursive definition of rk in algorithm 7 by setting
rk = 0 for all k ≥ d and prove the following statement by induction on k ∈ Z:

If C is exact at Cj for all j > k, then ri−1 = mi − rk(D(i+1))) for all i ≥ k. (15)

We start the induction by k = d and the induction step will go from k to k − 1. The
case, k = d is clear. Now assume the statement holds for k + 1 and that C is exact at
Cj, for all j > k. By induction hypothesis ri−1 = mi − rk(D(i+1)) for all i > k and by
definition rk−1 = mk − rk. Plugging the former equation, for i = k + 1, into the latter
equation, yields

rk−1 = mk − rk = mk − (mk+1 − rk(D(k+2))) = mk − (mk+1 − ker(D(k+1)))

by exactness at k+1. Therefore, rk−1 = mk−rk(D(k+1)) by rank-nullity, which concludes
the induction step.
Since C is a complex, C is exact at Ck if and only if

rk(D(k+1)) ≥ dimkerD(k) = mk − rk(D(k)) ⇐⇒ rk(D(k)) ≥ mk − rk(D(k+1)).
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Algorithm 7 Torsion of a bounded f.g. based chain complex over C
Require: {D(k)}1≤k≤d.

D(k) ∈ Matmk−1,mk
(F) represents the boundary operator Ck → Ck−1 of a

chain complex C over C with respect to a distinguished basis. C is assumed
to be f.g., exact and bounded by 0 and d ∈ N.

Ensure: τ ∈ C the torsion of C, which is non-zero if and only if C is acyclic.

Define rd := 0 ∈ Z; rd−1 := md ∈ Z and τ := 1 ∈ C.
Define K(d) ∈ Matmd,md

(C) to be the identity matrix Imd
.

for k = d, d− 2, . . . , 1 do
rk−2 := mk−1 − rk−1 ∈ Z.
Compute a singular value decompositon D(k) = UΣV † with singular values ζi,
where zero singular values appear last in Σ.
if rk−1 > mk−1 or (rk−1 > 0 and ζrk−1

= 0) then
return τ = 0.

W := (Irk−1
|0)V †K(k) ∈ Matrk−1,rk−1

(C).
Set τ = τ · det(U)(−1)k ·

(∏rk−1

i=1 ζi
)(−1)k · det(W )(−1)k .

K(k−1) := U ·
(

0
Irk−2

)
∈ Matmk−1,rk−2

(C).

if r−1 = 0, then return τ ; else return τ = 0.

This is the case, if and only if the following holds:

mk = rk(D(k+1)) or
(
1 ≤ mk − rk(D(k+1)) ≤ mk−1 and ζmk−rk(D(k+1)) ̸= 0

)
, (16)

recalling that the singular values ζi of D
(k) are ordered.

Combining equation (15) and (16), yields that algorithm 7 returns 0, if C is not exact.
Now assume that C is acyclic and we prove that algorithm 7 returns the same number

as algorithm 6. This would then conlcude the proof, since the torsion of an acyclic chain
complex is, in particular, non zero. Equation 15, exactness of C and the rank-nullity
theorem imply that ri−1 = rk(D(i)) for all 0 ≤ i ≤ d.
Fix some 0 < k ≤ d and consider some singular value decomposition D(k) = UΣV †

with U ∈ U(mk−1), Σ = (ζ1, . . . , ζrk−1
, 0, . . . , 0) ∈ Matmk−1,mk

(C), V ∈ U(mk). Then
(D(k)K(k))† = (K(k))†V †ΣTU †. The matrix

K(k−1) := U

(
0

Irk−2

)
∈ Matmk−1,rk−2

(C)

with
(

0
Irk−2

)
∈ Matmk−1,rk−2

(C) has orthonormal columns and satisfies

(D(k)K(k))† ·K(k−1) = 0 ∈ Matrk−1,rk−2
(F).
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So, we may assume that we have picked this specific K(k−1) in algorithm 6. Further, we
can write

Σ =

(
diag(ζ1, . . . , ζrk−1

) 0
0 0

)
∈ Matmk−1,mk

(C). (17)

We may write
(

W
W ′

)
= V †K(k) ∈ Matmk,rk−1

(C) for W ∈ Matrk−1,rk−1
(C) and W ′ ∈

Matrk,rk−1
(C). We obtain that

ΣV †K(k) =

(
diag(ζ1, . . . , ζrk−1

)W
0

)
∈ Matmk−1,rk−1

(C).

Hence,

det(D(k)K(k)
∣∣K(k−1)) = det

(
UΣV †K(k)

∣∣∣ U ( 0

Irk−2

))
= det(U) det

(
ΣV †K(k)

∣∣∣ ( 0

Irk−2

))
= det(U) det

(
diag(ζ1, . . . , ζrk−1

)W 0
0 Irk−2

)
= det(U)

(
rk−1∏
i=1

ζi

)
det(W ),

which was what we wanted to prove.

Remark 4.14 (Remarks on an implementation of algorithm 7). We don’t need to safe
the K(k)’s in algorithm 7, so we could overwrite them in every step of the for-loop.
Also, we might want to check whether rk−1 > mk−1 in the beginning of the loop, which
would safe us to compute one more singular value decomposition, when we will return
0 anyhow.
If rk−1 = 0 for some k and Cj is exact for all j > k, then we see from the proof of
algorithm 7 that D(k+1) is surjective. Because C is a complex, then D(k) = 0 and C(k)

will be exact at k. One possible singular value decomposition of D(k) is then given by
U = Imk−1

the identity matrix, Σ ∈ Matmk−1,mk−2
(C) the zero matrix and V † = Imk

the
identity matrix. Now W ∈ Mat0,0(C) must have determinant 1, and

∏rk−1

i=1 ζi = 1 is the
empty product. Further, rk−2 = mk−1 and K(k−1) = U = Imk−1

. All in all, it makes
sense to check in the beginning of the for-loop in algorithm 7, whether rk−1 = 0. In
this case, we don’t need to compute a singular value decomposition of D(k) but could
instead set K(k−1) = Imk−1

, rk−2 = mk−1 and leave τ unaltered. Then we could continue
the for-loop with k − 1.

Remark 4.15 (Algorithm 7 also works for F ⊊ C). If F ⊊ C then algorithm 7 still gives
the correct number. This is because we might view the chain complex as a chain complex
over C from the beginning and, as we know that τ(C) doesn’t depend on the chosen
basis, it does not matter if the coefficients have stayed in F all the time or not. Further,
tensoring a finitely generated free chain complex over F with C preserves and reflect
exactness, so we might check exactness over F or C and obtain the same result.
If F ⊆ R, we could force algorithm 7 to only use real matrices by doing real valued
singular value composition.
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4.3. Reidemeister torsion

Definition 4.16 (Reidemeister Torsion). Let X be a finite, connected simplicial set
with universal cover Z and fundamental group G, which we identify with the deck
transformation group of the covering projection Z → X. Let ∂̃ be the boundary map of
the left-Z[G]-module chain complex CCW(Z).
Suppose for all k ∈ Z the boundary map ∂̃k : CCW

k (Z) → CCW
k−1 (Z) is represented by

a matrix M (k) with coefficients in Z[G] with respect to the basis’ Xnd
k and Xnd

k−1 for
CCW

k (Z) and CCW
k−1 (Z), respectively.

Let ϕ : G → GL(Cn) be a n-dimensional complex representation of G which induces a
ring homomorphism ϕ̃ : Z[G] → End(Cn) from the integral group ring over G to the
endomorphism ring of Cn.
Define the twisted (normalized) chain complex CCW(X,ϕ) with k-th chain group

given by the C-vector space CCW
k (X,ϕ) =

⊕
σ∈Xnd

k

σ · Cn for all 0 ≤ k ≤ dim(X) (18)

and k-th boundary map

∂ϕk : CCW
k (X,ϕ)→ CCW

k−1 (X,ϕ) : σj · v 7→
∑

σi∈Xnd
n−1

σi · ϕ̃(M (k)
i,j )(v). (19)

The chain complex CCW(X,ϕ) can be based by the standard basis as suggested in
equation (18). Further, CCW(X,ϕ) is finitely generated and bounded. So, we might
define the Reidemeister torsion

τ(X,ϕ) := τ(CCW(X,ϕ)) ∈ C∗/(±im(det ◦ϕ)) ∪ {0},

as the combinatorial torsion of CCW(X,ϕ), which we defined in definition 4.10, but we
will identify nonzero values that differ by multiplication with elements in ±im(det ◦ϕ).
Note that by definition τ(X,ϕ) = 0 if and only if CCW(X,ϕ) is not acyclic.

Remark 4.17. The twisted chain complex CCW(X,ϕ) is isomorphic to CCW(Z)⊗Z[G]Cn,
considered as a right C-module. Here Cn becomes a left Z[G]-module via the ring
homomorphism ϕ̃ : Z[G]→ End(Cn) and the left End(Cn)-module structure on Cn.

Remark 4.18. Equation (19) is saying that the matrix of ∂ϕk with respect to the distin-
guished basis of CCW(X,ϕ) is obtained from the matrix M (k) by replacing every entry

M
(k)
i,j =

∑
g∈G agg, (ag ∈ Z, ag = 0 for all but finite g), with the matrix

∑
g∈G agϕ(g).

For example, if G = {1, γ} = Z2, ϕ(γ) =

(
−1 0
0 −1

)
and M (k) =

(
1− γ −1
0 γ

)
, then

∂ϕk is represented by the block matrix
2 0
0 2

−1 0
0 −1

0 −1 0
0 −1

 ∈ Mat4,4(C).
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Lemma 4.19. τ(X,ϕ) is independent of the choice of lifts σ ∈ Xnd
k that determine the

Z[G]-basis of CCW
k (Z).

Proof. Note that if we change the Z[G]-basis of CCW
k (Z) by replacing a lift σ̃ of σ ∈ Xnd

k

with g(σ̃) for some deck-transformation g ∈ G, then this corresponds to multiplying
τ(X,ϕ) by det(ϕ(g))(−1)k . But we explicitly defined τ(X,ϕ) only up to such factors.

Remark 4.20. Let X be a finite simplicial set with fundamental group G and Euler
characteristic χ(X). For any n-dimensional representation ϕ : G → GLn(C) of G we
have that the Euler characteristic of the twisted chain complex CCW(X,ϕ) is n · χ(X).
So, CCW(X,ϕ) can only be acyclic if χ(X) is zero. Hence Reidemeister torsion is only
interesting for simplicial sets X with χ(X) = 0. This is the case, for example, when |X|
is homotopy equivalent to a odd-dimensional manifold, see [8, cor. 3.37].

Proposition 4.21. The Reidemeister torsion τ(X,ϕ) is independent of the simple-
homotopy type of |X|. So, by [2], τ(X,ϕ) is, in particular, independent of the homeomor-
phism type of |X|, which, in turn, implies that τ(X,ϕ) is independent of the isomorphism
type of X by proposition 2.26.

To prove the previous proposition we assume some familiarity with torsion of chain
complexes C, denoted τ(C), over arbitrary rings and simple-homotopy theory as dis-
cussed in [11], [3] and [20]. We will write K1(R) and WH(G) multiplicatively for any
ring R and group G.

Lemma 4.22. [11, lem. 1.10] Let n,m ≥ 0 an R a ring. Let A ∈ GLm(End(R
n)).

Let B ∈ GLnm(R) be the matrix where the (i, j)th-block represents Ai,j with respect to
the standard basis of Rn. Then the assignment A 7→ B induces a group isomorphism
h : K1(End(R

n))→ K1(R).

Lemma 4.23. Let n ≥ 0, R a ring, and C an chain complex of End(Rn)-modules.

Assume that Ck = 0 for k < 0 and k > d and, moreover, that Ck has basis {e(k)i }0≤i<mk

for all 0 ≤ k ≤ d.
Define C ′ := C ⊗End(Rn) R

n as a chain complex over R, where we consider Rn as a left
End(Rn)-module via matrix multiplication. Then C ′ is bounded and for all 0 ≤ k ≤ d the

C-vector space Ck is based by {e(k)i ⊗fs}0≤i≤mk,
s=1,...,n

, where {f1, . . . , fn} denotes the standard

basis of Rn.
Further, C ′ is acyclic if and only if C is acyclic and in that case

τ(C ′) = h(τ(C)) ∈ K1(R)

for h the isomorphism from lemma 4.22.

Proof. If C is acyclic, then C admits a chain contraction using that C is free and
bounded. Hence, also C ′ admits a chain contraction and is, in particular, acyclic.
Now assume that C ′ is acyclic and take c ∈ ker(∂k) ⊆ Ck−1. Then for all s = 1, . . . , n
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there exist bs ∈ C ′
k+1 with ∂k(bs) = c⊗fs, i.e. ∂k(

∑n
s=1 bs) =

∑n
s=1 c⊗fs. We may write

bs =
∑

0≤i≤mk
ei ⊗ vi,s for some vi,s ∈ Cn for all s = 1, . . . , n. Define Ms,i ∈ End(Rn) by

Ms,i(fl) =

{
vi,s, if l = s,

0, else,

and set b̃s :=
∑

0≤i<mk
Ms,iei ∈ Ck. Then, for 0 ≤ l ≤ n,

∂k(b̃s)⊗ fl = ∂k(b̃s ⊗ fl) = ∂k

( ∑
0≤i<mk

ei ⊗Ms,ifl

)
=

{
∂k(bs) = c⊗ fs, if l = s,

∂k(0) = 0, else.

Hence, for b :=
∑n

s=1 b̃s we have ∂k(b) ⊗ fs = c ⊗ fs for all s = 1, . . . , n. Say a :=
∂k(b) − c =

∑
0≤i<mk−1

aiei for some ai ∈ End(Rn). Then for all s = 1, . . . , n and
i ∈ Ik−1, we have

0 = ∂k(b)⊗ fs − c⊗ f = a⊗ fs =
∑

0≤i<mk−1

ei ⊗ ai(fs),

so ai(fs) = 0 for all 0 ≤ i < mk−1. Since {fs}s=1,...,n forms a generating system of Rn,
we obtain ai = 0 for 0 ≤ i < mk−1, which proves 0 = a = c− ∂k(b). In other words, c is
a boundary. As c was an arbitrary cycle, we obtain that C is acyclic.
Now assume C is acyclic. By [3, §14.] there exists a finitely generated, based End(Rn)-

module F such that im(∂k ⊕ idF ) ⊆ Ck−1 ⊗ F is free for all 0 ≤ k ≤ d and such that
τ(C ⊕ F ) = τ(C), as well as, τ(C ′) = τ((C ⊕ F ) ⊗ Rn). So, we may replace C with
C ⊕ F and assume that im(∂k) is free for all 0 ≤ k ≤ d.
Because

0→ im(∂k+1)→ Ck
∂k−→ im(∂k)→ 0

is split exact, for all 1 ≤ k ≤ d+ 1, there exists {b(k−1)
i }0≤i<rk−1

in Ck−1 forming a basis

of im(∂k) ⊆ Ck−1 and there are {b(k)i+rk
}0≤i<rk−1

with ∂kb
(k)
i+rk

= b
(k−1)
i for 0 ≤ i < rk−1

such that {b(k)i }0≤i<mk
is a basis of Ck.

For 0 ≤ k ≤ d let A(k) ∈ Matmk,mk
(End(Cn)) satisfy b

(k)
j =

∑
0≤i<mk

A
(k)
i,j e

(k)
i for all

0 ≤ j < mk. Then by [3, §16.1]

τ(C) =
d∏

i=0

[A(k)](−1)k+1

.

For all 0 ≤ k ≤ d, the collection {b(k−1)
i ⊗ fs}0≤i≤rk−1,

s=1,...,n
forms a R-basis of im(∂ϕk ) ⊆ C ′

k−1

and ∂′k(b
k
i+rk
⊗ fs) = b

(k−1)
i ⊗ fs for all 0 ≤ i < rk−1 and 1 ≤ i ≤ n.

Define B(k) ∈ Matn·mk,n·mk
(C) to consist of m2

k blocks of n × n-matrices, where the

(i, j)th-block is the matrix representing A
(k)
i,j with respect to the standard basis. Then

for all 0 ≤ k ≤ d∑
0≤i<mk,
s=1,...,n

B
(k)
n·i+s,n·j+l (e

(k)
i ⊗ fs) =

∑
0≤i<mk

e
(k)
i ⊗ A

(k)
i,j (fl) =

∑
0≤i<mk

A
(k)
i,j e

(k)
i ⊗ fl = b

(k)
j ⊗ fl
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for all 0 ≤ i < mk and s = 1, . . . , n. So, by [3, §16.1] applied to C ′, we have

τ(C ′) =
d∏

i=0

[B(k)](−1)k+1

,

and by the definition of h in lemma 4.22 we have h([Ak
i,j]) = [B(k)], which concludes the

prove of this lemma.

Proposition 4.24 (Invariance of Reidemeister torsion). Let X, Y be finite connected
simplicial sets. Let Z,W ∈ sSet be universal covers of X and Y , respectively. Let G
and H be the fundamental groups of X and Y , respectively, which we identify with the
deck-transformation groups of Z → X and W → Y , respectively. Let ϕ : H → GL(Cn)
be a homomorphism. Define ψ := ϕ ◦ π1(f) : G → GL(Cn). Let f : |X| → |Y | be a
homotopy equivalence and τ(f) ∈WH(H) be the Whitehead torsion of f . Then

τ(Y, ϕ) = τ(X,ψ) · (det ◦h̃ ◦ ϕ̃∗)(τ(f)) ∈ C∗/(± det ◦ϕ(H))) ∪ {0},

where

• ϕ̃∗ is the group homomorphism WH(H) → K1(End(Cn))/ ± ϕ(G) induced by ϕ :
H → GL(Cn)

• h̃ : K1(End(Cn))/± ϕ(G)→ K1(C)/± ϕ(G) is the group isomorphism induced by
h from lemma 4.22

• det : K1(C)/ ± ϕ(G) → C∗/ ± ϕ(G) is the group isomorphism induced by the
determinant.

Proof. The group homomorphisms ϕ : H → GL(C) and ψ : G→ GL(Cn) induce ring ho-
momorphisms ϕ̃ : Z[H]→ End(Cn) and ψ̃ : Z[G]→ End(Cn). By lemma 4.23 the chain
complexes CCW(Y, ϕ̃) := CCW(W ) ⊗Z[G] End(Cn) and CCW(X, ψ̃) := CCW(Z) ⊗Z[G]

End(Cn) are acyclic if and only if CCW(Y, ϕ) and CCW(X,ψ) are acyclic, respectively.
By [20, thm. 9.1], CCW(Y, ϕ̃) being acyclic, implies the same for CCW(X, ψ̃). The
converse direction holds by applying [20, thm. 9.1] to a homotopy inverse of f . Hence,
CCW(X,ψ) is acyclic if and only if CCW(Y, ϕ) is acyclic. We now assume that this
holds. By [20, thm. 9.1], we have

τ(CCW(Y, ϕ̃)) = τ(CCW(X, ψ̃)) · ϕ̃∗τ(f) ∈ K1(End(Cn)/± ϕ(H). (20)

Applying h̃ to equation (20) and then using lemma 4.23 yields that

τ(CCW(Y, ϕ))
4.23
= h̃(τ(CCW(Y, ϕ̃)))

(20)
= h̃(τ(CCW(X,ψ))) · h̃(ϕ∗τ(f))

4.23
= τ(CCW(X,ψ)) · h̃(ϕ∗τ(f)) ∈ K1(C)/± ϕ(H) (21)

and now the result follows by applying the isomorphism induced by the determinant to
equation (21).
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Proof of proposition 4.21. This follows from proposition 4.24 because simple homotopy
equivalence satisfy τ(f) = 1.

Lemma 4.25. Let ϕ : G → Cn, ψ : G → Cm be representations of the fundamental
group G of a finite, connected simplicial set X. Then

τ(X,ϕ⊕ ψ) = τ(X,ϕ) · τ(X,ψ) mod detϕ(G) · detψ(G).

Moreover, if ϕ and ψ are equivalent, then τ(X,ϕ) = τ(X,ψ).

Proof. Using the notations of definition 4.16, the assignment

CCW(X,ϕ)⊕CCW(X,ψ)→ CCW(X,ϕ⊕ψ), (σj ·v)⊕ (σl ·w) 7→ σj · (v⊕0)+σl · (0⊕w)

induces an isomorphism of chain-complexes that preserves the distinguished basis. So,
τ(CCW(X,ϕ ⊕ ψ)) = ±τ(CCW(X,ϕ)) · τ(CCW(X,ψ)) by [20, lem. 3.4], which proves
the first statement.
Now suppose there is A : Cn → Cn invertible with A ◦ (ϕ(g)) = (ψ(g)) ◦A : Cn → Cn

for all g ∈ G. Then, using the notations of definition 4.16, the assignment

CCW(X,ϕ)→ CCW(X,ψ), σ · v 7→ σ · Av

induces an isomorphism h of chain complexes. This already proves the statement in
the case that CCW(X,ϕ) is not acyclic. Now let us assume that CCW(X,ϕ) is exact.
The image of the distinguished basis of CCW

k (X,ϕ) under hk is obtained from the distin-
guished basis of CCW

k (X,ψ) by applying the block matrix diag(A, . . . , A). So, unraveling
definition 4.10,

τ(CCW(X,ϕ)) =

dim(X)∏
k=0

(det(A)#Xnd
k )(−1)k+1 · τ(CCW(X,ψ)).

Because X has Euler characteristic zero, we obtain

dim(X)∏
k=0

det(A)(−1)k+1

= det(A)(
∑dim(X)

k=0 (−1)k+1#Xnd
k ) = det(A)0 = 1,

which proves the statement.
A more conceptual proof of the second statement of the lemma is the following:

We might identify τ(X,ϕ) with the torsion of CCW(X, ϕ̃) := CCW(Z)⊗Z[G] End(Cn) in
K1(EndCn))/ϕ(G), as we did in the proof of proposition 4.24. Here we consider End(Cn)
as a left Z[G]-module via the ring-homomorphism ψ̃ : Z[G] → End(Cn) induced by ψ.
Also, CCW(X, ϕ̃) is considered as a chain-complex of right End(Cn)-modules.
Suppose ψ and ϕ are equivalent. Then, there exists a linear isomorphism A : Cn → Cn

such that (ψ(g)) ◦ A = A ◦ (ϕ(g)) for all g ∈ G. Now

h : CCW(X, ϕ̃)→ CCW(X, ψ̃), σ ⊗M 7→ σ ⊗ A ◦M
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defines an isomorphism of chain complexes of Z[G]-modules which preserves the dis-
tinguished basis. h also gives an isomorphism between CCW(X, ϕ̃) and CCW(X, ψ̃) as
chain complexes of right End(Cn)-modules. Since h preserves the distinguished basis,
we have τ(CCW(X, ϕ̃)) = τ(CCW(X, ψ̃)) ∈ K1(End(Cn)) and the result follows.

Remark 4.26. τ(X,ϕ) equals ±1 for every rational representation of a finite fundamental
group π1(X) because every such rational representation is equivalent to a representation
by integer matrices, which have determinant ±1.
Remark 4.27. Let X be a finite, connected simplicial set with finite fundamental group
G. Let ϕ : G → Cn be a presentation of G. Then | detϕ(g)| = 1 for all g ∈ G,
because g, and hence, detϕ(g) ∈ C∗ has finite order. Therefore, the absolute value
|τ(X,ϕ)| is always a well-defined non-negative real number. In the case, that ϕ is a real
representation, τ(X,ϕ) is defined up to a sign.
Moreover, by complete irreducibility, ϕ is equivalent to a direct sum of irreducible

complex representations ψ1, . . . , ψr of G, i.e. ϕ ∼ ψ1 ⊕ . . . ψr. By lemma 4.25 we have
|τ(X,ϕ)| =

∏r
i=1 |τ(X,ψi)|. So, if we are only interested in orthogonal representations,

or, if we are only interested in the absolute values of torsions, it suffices to compute
τ(X,ϕ) for all irreducible representations of G.

Remark 4.28 (Application of Reidemeister torsion). Let us use the notation of proposi-
tion 4.24 and assume that H is finite and that CCW(Y, ψ) is acyclic for all non-trivial
irreducible representations of H.
By [11, thm. 6.9] an element ω ∈ WH(H) has finite order if and only if ϕ̃∗(ω) = 1

for every irreducible orthogonal representation ϕ of H. For ϕ the trivial representation,
ϕ̃∗τ(f) = 1 by remark 4.26. So, using proposition 4.24, and [11, thm. 6.9], we obtain
that τ(f) has finite order in Wh(H), if and only if τ(Y, ϕ) = τ(X,ψ) for all irreducible
orthogonal representations ψ of H.
This result can be strengthened in the case that H is, moreover, abelian. By [11,

thm. 6.4], WH(H) is a free abelian group of finite rank. We obtain that f is a simple-
homotopy equivalence if and only if |τ(Y, ϕ)| and |τ(X,ϕ◦π1(f))| are equal non-negative
real numbers for every orthogonal representations ϕ of H.

Proof of algorithm 8. Let us denote the fundamental group of X with G and let Z → X
be a universal covering projection. We identify G with the deck-transformation group
of the covering projection Z → X.
Algorithm 3 applied to X, {ei}0≤i<m, {ni} = ∅ computes CCW(Z) by giving the matrices
M (k) of the boundary operators with respect to the Z[G]-basis of the chain groups used
in the definition of Reidemeister torsion in 4.16. To obtain the twisted chain complex
CCW(X,ϕ) we have to replace the matrices M (k) with matrices with coefficients in C
by the recipe given in remark 4.18.
The given algorithm 8 does exactly this, but in one step, i.e. we do algorithm 3 but

replace the matrix entries already when they are computed.
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Algorithm 8 Reidemeister torsion of simplicial set X for given representation of π1(X)

Require: X: Connected simplicial set, Xnd
k = {σ(k)

1 , . . . , σ
(k)
mk} for all k ≤ dimX <∞,

{ei}1≤i≤m: X
nd
1 \ {e1, . . . , em} set of edges of a spanning tree Γ in sk1(X),

ψ: {e1, . . . , em} → GLn(C) inducing a homomorphism ϕ : π1(X)→ GLn(C).
(Here we identify π1(X) with a quotient of F (e1, . . . , em) via prop. 2.49.)

Ensure: τ : The Reidemeister torsion τ(X,ϕ) ∈ C.
(Here τ = 0 if and only if CCW(X,ϕ) is not exact.)

deckTrnsf := {k : [ ] for k = 1, . . . , dim(X)} ▷ encodes the g0’s from algorithm 2
twistComplx := {k :Mk := matrix(C, n ·mk−1, n ·mk) for k = 1, . . . , dimX}

▷ These matrices are defined to be zero and will be filled later
for i = 1, . . . ,m1 do

σ
(0)
j := d0σ

(1)
i , σ

(0)
l := d1σ

(1)
i ▷ Obtain list indices j, l

Set M1.submatrix(nl, ni, n× n) = −In to be the identity matrix.

if σ
(1)
i = er for some r = 1, . . . ,m then
deckTrnsf[1].append(ψ(ej)); M1.submatrix(nj, ni, n× n)+ = ψ(ej)

else
deckTrnsf[1].append(In); M1.submatrix(nj, ni, n× n)+ = In

for k = 2, . . . , dimX do
for i = 1, . . . ,mk do

for r = 1, . . . , k do
if drσ

(k)
i = σ

(k−1)
j is nondegenerate then

Mk.submatrix(nj, ni, n× n)+ = (−1)rIn
dkσ

(k)
i = sI(σ

(s)
j ) ▷ Obtain degeneracies, dimension and list index of dkσ

(k)
i

if 0 ∈ I then
if d0(σ

(k)
i ) = σ

(k−1)
l is nondegenerate then

Mk.submatrix(nl, ni, n× n)+ = In
deckTrnsf[k].append(1)

else
g0 := deckTrnsf[s][j]; deckTrnsf[k].append(g0)

if d0(σ
(k)
i ) = σ

(k−1)
l is nondegenerate then

Mk.submatrix(nl, ni, n× n)+ = g0

Apply algorithm 7 to the chain complex twistComplx to obtain its torsion τ ∈ C.
return τ
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5. Implementation

All algorithms discussed in this paper have been implemented in [18, SageMath] and are
available under https://github.com/fNeugebauer/Computation-of-Combinatorial-Torsion
together with example computations. The source code with examples is also printed in
the appendix of this bachelor thesis.

5.1. Implementation of simplicial sets

We use the implementation of finite simplicial sets that is provided by SageMath and
documented in the reference manual [17].
One of our main examples, that we used to test our algorithms, are lens spaces. To

construct simplicial sets with geometric realization a given lens space, we implemented
a function in SageMath that computes joins of simplicial sets, as well as, a function that
computes joins of morphisms of simplicial sets.
Let p ∈ N>0 be a positive integer and q1, . . . , qn ∈ Z be integers such that gcd(p, qi) = 1

for all i = 1, . . . , n. Fix a pth-root of unity ζ ∈ C∗. Define ρi : S
1 → S1, x 7→ ζqi · x

for all i = 1, . . . , n. Then the n-fold join of the morphisms ρi yields a continuous map
F : S2n−1 → S2n−1 given by the composition

S2n−1 ∼= S1 ⋆ · · · ⋆ S1 ρ1⋆···⋆ρn−−−−−→ S1 ⋆ · · · ⋆ S1 ∼= S2n−1.

As F p = id, F generates an action of Z/(p) on S2n−1. The quotient of S2n−1 by this
action of Z/(p) yields the lens space L(p; q1, . . . , qn).
We construct L(p; q1, . . . , qn) as follows. We define S1 as a simplicial set consisting of

p non-degenerate 1 and p non-degenerate 0-simplices arranged in a circle. Now we can
construct ρi : S

1 → S1 as a morphism of simplicial sets that sends the kth 1-simplex
to the (k + qi mod p)th 1-simplex. As we implemented joins of morphisms of simplicial
sets, we are able to construct F as the join ρ1 ⋆ ρ2 ⋆ · · · ⋆ ρn. To obtain L(p; q1, . . . , qn)
we take the coequalizer of the identity and F .

5.2. Calculation with groups

For all calculations involving groups we use the [6, GAP] interface that is provided with
[17, SageMath]. In particular, we use a GAP function that simplifies group presentations
to get more attractive results.
One algorithm we implemented, that is not explicitly given by one of the algorithms

described in this paper, is a SageMath function we called all r torsions. The function
takes as input a finite, connected simplicial set X and, firstly, computes a presentation of
its fundamental group G. If GAP can detect that G is finite, then the function asks GAP
to compute all irreducible representations of G. For every irreducible representation ϕ
of G, we ask GAP to provide the matrix ϕ(ei) for every generator ei of the computed
presentation of G. The function all r torsions then returns the Reidemeister torsions
of X with respect to the computed representations. The last part of the function is
implemented as described in algorithm 8.
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5.3. Calculation with matrices

For the computation of the torsion of an acyclic, bounded and based chain complex
of finite dimensional C-vector spaces, we implemented algorithm 7 in [18][SageMath].
For the singular value decomposition we used a [7][NumPy] function. We implemented
torsion of chain complexes to be computed with double precision floats, so we can not
expect more than 15 significant decimal digits precision.
Also, our implementation of algorithm 8 yields a twist complex where the boundary
operators are given by matrices with entries double precision complex numbers. The
field of double precision complex numbers is refered to by “CDF” in [18][SageMath].
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A. Appendix: Example Calculations and Source Code

A. Appendix: Example Calculations and Source Code

The following is an export of the Jupyter notebook available under https://github.
com/fNeugebauer/Computation-of-Combinatorial-Torsion.
We implemented, among others, the following functions in [18][SageMath]:

1) A function with has input a simplicial set X and a normal subgroup N ⊆ π1(X)
with finite index. The function returns a covering projection p : Z → X such that
p∗π1(Z) = N and Z is connected.

2) A function with has input a simplicial set X and a normal subgroup N ⊆ π1(X)
with finite index. The function returns a covering projection p : Z → X such that
p∗π1(Z) = N , Z is connected and p is given as the pullback of a universal covering
projection skdim(X)(EG) → skdim(X)(BG), where G := π1(X)/N . The function
returns the pullback square.

3) A function that constructs the join of two simplicial sets, as well as, a function
that constructs the join of morphisms of simplicial sets.

4) A function that constructs the lens space L(p; q1, . . . , qn) for given p ∈ N>0 and
q1, . . . , qn ∈ Z.

5) A function that computes the combinatorial torsion of a bounded, based chain
complex of finite-dimensional C-vector spaces.

6) A function that computes the Reidemeister torsion of a given simplicial set X
for a given finite-dimensional complex representation ϕ : π1(X) → Cn of the
fundamental group of X.

7) A function that has input a simplicial set X with finite fundamental group G
and returns the Reidemeister torsions of X with respect to all complex irreducible
representations of G.

Moreover, we computed, among others, the following examples:

1) Some finite index covering spaces of the torus and the surface of genus 2.

2) The Reidemeister torsions of the following lens spaces:

L(5; 1, 1), L(4; 1, 3, 1), L(5; 2, 3), L(7; 1, 1), L(7; 1, 2), RP 3.

We compared these numbers to the theoretical results in [20, thm. 10.6].

3) The Reidemeister torsions of the Poincaré homology sphere.

4) The Reidemeister torsions of the following products:

S2 × RP 3, L(3; 1, 1)× RP 2, L(3; 1, 1)× S2, L(3; 1, 2)× RP 2,

L(3; 1, 2)× S2, L(3; 1, 2)× L(3; 1, 1), L(3; 1, 2)× CP 2, RP 3 × CP 2.

These examples all satisfied the formula τ(X × Y, ϕ⊗ψ) = τ(X,ϕ)χ(Y )τ(Y, ψ)χ(X)

for ϕ, ψ representations of π1(X) and π1(X), respectively.
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