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FORMAL GROUP LAWS AND STABLE HOMOTOPY THEORY OVER

PROFINITE ABELIAN GROUPS

Abstract. We generalize the theory of complex oriented cohomology theories to the setting

of A-equivariant homotopy theory, for a compactly metrizable abelian group A. A complex ori-

entation will allow for the computation of the (co)-homology of A-equivariant Grassmannians.
The A-equivariant complex bordism spectrum carries the universal A-equivariant orientation.

Our study of complex oriented A-spectra will lead naturally to a definition of A-equivariant

formal group law. We identify the homotopy groups of the A-equivariant complex bordism
spectrum with the A-equivariant Lazard ring.

We factor HKR’s chromatic character map via geometric fixed points through the Zn
p -

equivariant Borel Lubin-Tate theory.
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1. Introduction

1.1. The Classical Story. To every complex oriented cohomology theory one can assign a
formal group law. This connection between stable homotopy theory and formal group laws is
extremely firm: While the complex bordism spectrum MU is the initial example of a complex
oriented spectrum, it is a theorem of Quillen that the formal group law associated to MU is the
initial example of a formal group law. The theory of complex orientations and formal group laws
has deep applications in stable homotopy theory such as the classification of thick subcategories
of finite spectra by Devinatz, Hopkins and Smith [DHS88].

1.2. Motivation. In this thesis, we generalize the above classical story to a broader setup.
We allow the appearing spaces, as well as their cohomology theories, to carry the action of a
compactly metrizable abelian group A. Spaces with an A-action assemble into the ∞-category
of genuine A-spaces SA. Cohomology theories for A-spaces form the ∞-category of genuine
A-spectra. In this thesis we concern ourselves with the following natural questions:

• For which A-equivariant cohomology theories can we compute the cohomology of the
classifying space of A-equivariant complex vector bundles?

• Can we find universal properties of the A-equivariant complex bordism theory and its
associated genuine A-spectrum MUA?

• Can the homotopy groups of the A-equivariant complex bordism spectrum MUA be
described analogously to their classical counterparts?

At first glance, the generality permitted by an arbitrary compactly metrizable abelian group
A may appear excessive—particularly given that the questions posed above have already been
answered affirmatively in the case where A is a compact abelian Lie group; see [CGK02] and
[Hau22]. However, this flexibility is in fact well motivated. The HKR character map, originally
introduced in [HKR00], is a celebrated and well studied construction in chromatic homotopy
theory, see [Rez06], [Sta13b], [BS17], and [Lur19].

We show that the HKR character map arises as the comparison map between Borel Lubin-
Tate theory and its Zn

p -equivariant geometric fixed points. In this sense, the HKR character
map foreshadows a well-behaved Zn

p -equivariant homotopy theory. Here, Zn
p denotes the n-fold

product of the topological group of p-adic integers Zp.
On the one hand, our interpretation of the HKR character map can shed light on its good

functoriality properties. Indeed, we prove that the HKR character map is the effect of a symmet-
ric monoidal left adjoint functor on mapping spectra. On the other hand, Zn

p -equivariant Borel
Lubin-Tate theory is equivariantly complex orientable. Hence, it might be fruitful to study the
HKR character map from the perspective of Zn

p -equivariant formal group laws.

1.3. The Setup. A substantial portion of the thesis is devoted to recalling and developing
equivariant homotopy theory for general compact metrizable groups A, without assuming A to
be abelian. To address the motivating questions posed above, we later specialize to the case
where A is abelian.

1.3.1. The Symmetry Group. A topological group A is compactly metrizable if and only if A is
isomorphic to an inverse limit

lim←− (A0 ↞ A1 ↞ A2 ↞ A3 ↞ A4 ↞ · · · )
with each An a compact Lie group. Examples of compactly metrizable groups are first-countable,
a.k.a. light, profinite groups, such as the p-adic integers or the Morava stabilizer group. Other
examples of compactly metrizable groups include solenoids, i.e. countable inverse limits of tori,
or countable products of compact Lie groups. Let us fix such a compactly metrizable group A
for the rest of this introduction.
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1.3.2. Genuine A-Equivariant Spaces and Spectra. Fausk [Fau08] defined the ∞-category of A-
spaces SA via a model structure on the category of spaces with A-action. A generalized version
of Elmendorf’s theorem states that the fixed point functors associated to certain subgroups of
A exhibit the ∞-category of A-spaces as category of presheaves on an orbit category. Using the
formula for A as an inverse limit A ∼= lim←−n

An we obtain a formula for A-spaces SA ≃ lim←−n
SAn

as an inverse limit in Cat∞.
In [Fau08], the author constructed the ∞-category of A-spectra SpA by passing to the under-

lying ∞-category of a suitable model category of orthogonal A-spectra. We show that the fixed
point functors induce an equivalence SpA ≃ lim←−n

SpAn
in Cat∞. In the case that A is profinite,

this result is due to [BBB24]. Generalizing a result of [GM23], we prove that the symmetric
monoidal∞-category of A-spectra enjoys the following universal property: The suspension func-
tor Σ∞ : SA,∗ → SpA is the initial morphism in CAlg(PrL) out of pointed A-spaces sending all
representations spheres to tensor-invertible objects.

For a closed subgroup B ≤ A, there are two notions of fixed point functors. The categorical
fixed point functor (−)B : SpA → Sp is corepresented by the orbit spectrum Σ∞

+ A/B. On the

other hand, the geometric fixed point functor ΦB
A : SpA → Sp satisfies a compatibility relation

with suspension spectra:

ΦB
A ◦ Σ∞ ≃ Σ∞ ◦ (−)B .

The associated B-fixed homotopy groups

πB
∗ := π∗ ◦ (−)B : SpA → Abgr

form a jointly conservative family of functors to graded abelian groups, as B ranges over those
subgroups of A, which are “well-behaved” in the sense of Definition 2.3.1.

1.3.3. Connection to Global Spectra. We construct a symmetric monoidal left adjoint functor

ResA : Spgl → SpA

from Schwede’s category of global spectra to the category of genuine A-spectra, extending
Schwede’s construction to compactly metrizable groups. For a global spectrum X , the global
structure induces comparison maps

πAn
∗ (ResAn

(X ))→ π
An+1
∗

(
ResAn+1

(X )
)

along the inverse system of group homomorphisms An+1 → An. We construct an isomorphism

πA
∗ (ResA(X )) ∼= colimn π

An
∗ (XAn

) , (1)

naturally in X ∈ Spgl. In addition, we enhance the point-set Thom space construction to a sym-
metric monoidal left adjoint Thom spectrum functor ThA : S/BOPA

→ SpA. The construction
comes with equivalences

ThA ◦ InflAAn
≃ InflAAn

◦ThAn
and ThA ◦ResA ≃ ResA ◦Thgl,

where Thgl is Schwede’s global symmetric monoidal Thom spectrum functor.

1.4. A-Equivariant Chromatic Homotopy Theory. When A is a compact abelian Lie group,
Cole, Kriz, and Greenlees [CGK00] introduced the notion of a complex oriented A-spectrum, along
with the associated A-equivariant formal group law. These definitions extend verbatim to the
broader class of abelian groups considered in Setup 1.3.

In this generalized setup, we extend the computations from [CGK02] to describe the A-
equivariant (co)homology rings

E∗
A(BA(U(d))) and EA

∗ (MUA),
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where BA(U(d)) denotes the classifying space for A-equivariant d-dimensional complex vector
bundles, and MUA is the A-equivariant complex bordism spectrum. These formulas hold for
any complex oriented A-spectrum E.

We then prove that the A-equivariant complex bordism spectrum MUA is the initial example
of a complex oriented commutative homotopy ring A-spectrum.

Beyond this, our main results are the following: Assume an abelian topological group A is
isomorphic to an Nop-indexed inverse limit of compact Lie groups An. Then, we show

Theorem (Equivariant Lazard’s Theorem). The universal A-equivariant formal group law exists
and is defined over the colimit of equivariant Lazard rings

LA := colimn LAn .

Theorem (Equivariant Quillen’s Theorem). The graded ring homomorphism

LA

∼=−−→ πA
∗ MUA

classifying the A-equivariant formal group law associated to the universal complex orientation of
MUA is an isomorphism.

The equivariant Quillen’s theorem is known for compact abelian Lie groups due to [Hau22].
The global structure of the complex bordism spectrum and our formula (1) allows us to pass to
limits with respect to the symmetry group:

LA ≃ colimn LAn
≃ colimn π

An
∗ (MUAn

) ≃ πA
∗ (MUA).

1.5. Factorization of the HKR-Character Map. Let E be a p-local height n Lubin-Tate
spectrum. The HKR character map is a tool to compute the rationalized E-cohomology ring of
the classifying space BG, whenever G is a finite group. If X is a finite G-space, then the HKR
character map

E∗(XhG)
HKR−−−→ L∗(E)⊗E∗ E∗(FixZn

p
(X,G))G (2)

becomes an isomorphism after base change to a certain E∗-algebra L∗(E). In [HKR00], the
G-space FixZn

p
(X,G) is defined via an explicit formula, while the Q-algebra L∗(E) is shown to

have a certain universal property as an E∗-algebra. In the case that X is a point, the G-space
FixZn

p
(X,G) identifies with the set of group homomorphisms homGrp(Zn

p , G) equipped with the

conjugation G-action and we obtain an algebraic formula for L∗(E)⊗E∗ E∗(BG).
The relation to Zn

p -equivariant homotopy theory comes from the following two observations:

(1) Consider the Zn
p -equivariant Borel theory EbZn

p . The homotopy ring Zn
p -spectrum EbZn

p

inherits a complex orientation from the Lubin-Tate spectrum E. The general formula
for geometric fixed points of complex oriented spectra, see Corollary 3.5.9, provides a
preferred graded ring isomorphism

π−∗

(
ΦZn

p (EbZn
p )
)
→ L∗(E).

(2) For a finite group G, the G-restriction functor ResG : Sgl → SG from global spaces admits
a left adjoint (−)//G : SG → Sgl. The global orbit functor (−)//G lifts the homotopy orbit
functor, in the sense that for a G-space X we have an equivalence between its homotopy
orbits XhG and the underlying space Rese(X//G). There is a way to “interchange” the
process of taking (global/homotopy) G-orbits and Zn

p -fixed points: We construct an
explicit equivalence

I : FixZn
p
(G,X)hG

≃−−→ (ResZn
p
(X//G))

Zn
p
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from the homotopy orbits of the G-space FixZn
p
(G,X) to the Zn

p -fixed points of the

Zn
p -space ResZn

p
(X//G).

In Theorem 4.0.1, we prove that the HKR-character map factors as follows

E(XhG) L∗(E)⊗E∗ E(FixZn
p
(X,G))G

Eb(X//G) EbZn
p (ResZn

p
(X//G)) ΦZn

p (EbZn
p )(FixZn

p
(X,G)hG)

HKR

∼= ∼=

ResZnp Φ
Znp

From left to right, the nodes of the diagram denote unreduced cohomology with coefficients in
the following cohomology theories (in the diagram we abbreviated E∗ with E for all cohomology
theories): the Lubin-Tate theory spectrum E ∈ Sp, the associated global Borel theory Eb ∈
Spgl, the Zn

p -equivariant Borel theory EbZn
p := ResZn

p
(Eb) ∈ SpZn

p
and the geometric fixed point

spectrum ΦZn
p (EbZn

p ) ∈ Sp.
Let us explain the maps in the diagram in detail:

• The left vertical isomorphism in the diagram comes from the adjunction

Rese : Spgl ⇄ Sp :(−)b and the equivalence XhG ≃ Rese
(
X//G

)
of spaces. Here (−)//G : SpG → Spgl is the left adjoint of G-restriction.

• The right hand vertical isomorphism is induced by the ring map E → ΦZn
p (EbZn

p ).
• The left lower horizontal arrow is the effect of the restriction functor ResZn

p
: Spgl → SpZn

p

on mapping spectra

ResZn
p
: map(Σ∞

+ X//G, E
b)→ map(Σ∞

+ ResZn
p
(X//G), E

bZn
p ).

• The right lower horizontal arrow is the effect of the geometric fixed point functor
ΦZn

p : SpZn
p
→ Sp on mapping spectra

ΦZn
p : map(Σ∞

+ ResZn
p
(X//G), E

bZn
p )→ map(Σ∞

+ FixZn
p
(X,G),ΦZn

p (EbZn
p )).

1.6. Organization of the Thesis. In Section 2, we dive into genuine equivariant homotopy
theory with a compactly metrizable symmetry group. In Section 3, we study complex oriented
A-spectra and A-equivariant formal group laws, for compactly metrizable abelian groups. In
Section 4, we factor the HKR character map applied to a G-space X through Borel equivariant
cohomology of the genuine Zn

p -space ResZn
p
(X//G).

1.6.1. Summary of Section 2: Pro Compact Lie Equivariant Homotopy Theory. We establish a
continuous version for the category of G-spaces and G-spectra in the sense of [BBB24], for any
compactly metrizable group G. In Proposition 2.6.10, we generalize the universal property of
the category of genuine G-spectra with respect to inverting representation spheres from compact
Lie groups to compactly metrizable groups.

In Section 2.5.1, we study classifying spaces of G-equivariant L-principal bundles BG(L).
As structure group we allow for any compact Lie group L. We may choose an isomorphism
G→ lim←−Gn to an Nop-indexed inverse limit along surjective morphisms Gn−1 ↞ Gn of compact
Lie groups Gn. In that situation, we can derive a colimit formula

colim
n∈N

InflGGn
(BGn

(L))
≃−−→ BG(L)

for the G-equivariant classifying space.
For any compactly metrizable group G, we construct and establish properties of the restriction

functor ResG : Spgl → SpG from global spectra, as well as of the G-equivariant Thom spectrum
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functor ThG : S/BOPG
→ SpG. The unstable version ResG : Sgl → SG will send a global

classifying space BglL of a compact Lie group L to the classifying space BG(L) of G-equivariant
L-principle bundles, see Construction 2.7.1. The G-equivariant Thom spectrum functor will be
symmetric monoidal and natural in the compactly metrizable group G, see Theorem 2.8.11.

Finally, in Section 2.9, we discuss examples of G-equivariant (ring)-spectra, such as Borel
spectra, the G-equivariant complex K-theory spectrum and the G-equivariant complex bordism
spectrum. For any compact metrizable group G, we discuss both telescoping formulas and Thom
classes for G-equivariant complex bordism spectra.

1.6.2. Summary of Section 3: Universality of Equivariant Complex Bordism. We fix an abelian
topological group A with discrete and countable Pontryagin dual A∗, e.g. the p-adic integers
A = Zp or a solenoid A = Tp. Equivalently, A is an abelian compactly metrizable group. We
choose morphisms φn : A → An exhibiting the topological group A as an Nop-indexed inverse
limit along surjective morphisms An−1 ↞ An of compact abelian Lie groups An.

Our Definition 3.1.4 of a complex oriented A-spectrum E is essentially the definition from
[Col96], adapted to our setup. A complex orientation

x(ϵ) ∈ E∗
A(CP∞

A ,CP(ϵ))

enables an explicit computation of the E-cohomology of A-equivariant complex projective spaces
CP(V ), such as the classifying space CP∞

A := BA(U(1)) of A-equivariant complex line bundles,
see Proposition 3.1.17. The structure and properties of the unreduced cohomology E∗

A(CP∞
A ) of

equivariant projective space motivates the definition of an A-equivariant formal group law over
πA
∗ (E). As discussed in Section 3.2, the notion of an A-equivariant formal group law is algebraic

and defines an invariant of complex oriented A-spectra.
In Section 3.3, we discuss co-restriction of equivariant formal group laws along continuous

group homomorphisms φ : A → B of compactly metrizable abelian groups. If an A-equivariant
formal group law F was associated to a complex oriented A-spectrum E, then the co-restriction
φ∗F is associated to the coinduced/fixed complex oriented B-spectrum φ∗B, which carries the
pushforward complex orientation φ∗(x(ϵ)), see Section 3.3.1. In Proposition 3.4.3, we prove that
the co-restrictions exhibit the category of A-equivariant formal group laws as an inverse limit of
the categories of An-equivariant formal group laws. This allows us to deduce the A-equivariant
Lazard theorem 3.4.5 from the abelian compact Lie group case [CGK00].

In Section 3.5, we compute the E-(co)homology of the classifying spaces BA(U(d)) of A-
equivariant complex vector bundles. In addition, we establish the Thom isomorphism in E-
(co)homology for A-equivariant complex vector bundles. Here, E is a complex oriented A-
spectrum. For φn : A → An the projections of the inverse limit, the An-spectrum (φn)∗E
carries the pushforward complex orientation. The abelian compact Lie group theory [CGK02] of
complex oriented An-spectra allows for an explicit computation of the (φn)∗E-homology groups

of BAn(U(n)). Taking the colimit along the inflations Infl
An+1

An
(−) allows us to deduce the E-

homology of BA(U(d)) from that computation, see Proposition 3.5.2.
In Section 3.6, we show that the complex bordism spectrum MUA is the initial example of

a complex oriented A-spectrum. Moreover, we compute the πA
∗ (E)-algebra EA

∗ (MUA), i.e. the
E-homology of the complex bordism spectrum, whenever E is a complex oriented A-spectrum.
Lastly, having established topological universality of the complex bordism spectrum, we are in a
position to prove the A-equivariant version of Quillen’s theorem, see Theorem 3.7.1.

1.6.3. Summary of Section 4: Factorization of the HKR-Character Map. The overall goal of
Section 4 is proving the factorization of the HKR character map as in Theorem 4.0.1. In the



FORMAL GROUP LAWS AND STABLE HOMOTOPY THEORY OVER PROFINITE ABELIAN GROUPS 7

subsection on Formal Loop Spaces, we recall the construction of the G-space FixA(G,X), associ-
ated to an abelian complex metrizable group A and a G-space X. We then construct equivalences

FixA(G,X)hG
≃−→ MapPro(Sgl)

(BglA,X//G)
≃−−→
(
ResA(X//G)

)A
naturally in the G-space X, interchanging A-fixed points with G-orbits.

In Section 4.2, we check that a complex orientation of a homotopy ring spectrum E induces an
A-equivariant complex orientation of the associated Borel A-spectrum EbA. Moreover, we relate
the Euler class associated to a character α : A→ U(1) to the Chern class associated to the line
bundle Bα : BA → BU(1) = CP∞. The geometric fixed points of a complex oriented spectrum
are obtained from the categorical fixed points by inverting Euler classes, see Corollary 3.5.9. In
conclusion, we obtain a formula for the geometric fixed point ring spectrum ΦA(EbA), entirely
in terms of the complex oriented spectrum E.

In particular, applying this formula to a height n Lubin-Tate theory spectrum E and an n-fold
product of the p-adic integers A = Zn

p , we identify the homotopy ring of the geometric fixed point

spectrum ΦZn
p (EbZn

p ) with the E∗-algebra L∗(E) from the HKR character map.
Finally, we conclude Section 4 by giving a proof of the factorization of the HKR character

map stated in Theorem 4.0.1.

1.7. Acknowledgments. I would like to thank Emma Brink, Phil Pützstück, Tobias Lenz,
William Balderrama, Stefan Schwede, Julius Groenjes, Qi Zhu, and Lucas Piessevaux for valuable
discussions, their comments, and their corrections on earlier drafts of this Master thesis. I am
especially grateful to my advisor, Markus Hausmann, for suggesting this project and for many
insightful conversations.

2. Pro Compact Lie Equivariant Homotopy Theory

2.1. Compactly Metrizable Groups as Pro Compact Lie Groups.

Definition 2.1.1. For a topological group G, we write G ∈ Grp(CptMet) if G is isomorphic to
some Nop indexed inverse limit

lim←−
(
G0

ϕ0←− G1
ϕ1←− G2

ϕ3←− G3
ϕ4←− · · ·

)
(3)

in the category of topological groups, with each Gn ∈ CptLie a compact Lie group and ϕn : Gn →
Gn−1 a surjective, continuous group homomorphism. We view Grp(CptMet) as a topological
category with morphism spaces consisting of continuous group homomorphisms

HomGrp(G,L) ⊆ HomTop(G,L)

equipped with the compact-open topology. CptLie ⊆ Grp(CptMet) denotes the full topological
subcategory spanned by compact Lie groups.

Remark 2.1.2. The Peter-Weyl theorem for compact Hausdorff groups implies that a topological
group G is in Grp(CptMet) if and only if G is compact and metrizable, see [BTD85, Theorem
III.3.1.]. A compact Hausdorff group G is metrizable if and only if it is first-countable if and
only if it is second-countable, see [BK96, page 14].

Lemma 2.1.3. Let G be an inverse limit of compact Hausdorff topological groups Gn along
surjective homomorphisms

G := lim←−
n

(G0 ↞ G1 ↞ G2 ↞ G3 ↞ · · · ) .

If the topological group G admits the structure of a Lie group, then the inverse limit stabilizes,
i.e. there exists m ≥ 0, such that Gn+1 → Gn is a homeomorphism for all n ≥ m.
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Proof. By [RZ00, Lemma 1.1.5.], the continuous homomorphism G → Gn is surjective. We
conclude that each Gn is a Lie group. Without loss of generality, G0 already has the maximal
dimension among all the Gn. When we write Nn := ker(G→ Gn), then N0/Nn = ker(Gn → G0)
is a finite, discrete group. Moreover, by [RZ00, Corollary 1.1.18.], the canonical map N0 →
lim←−N0/Nn is a homeomorphism. Thus, N0 ≤ G is both a profinite group, as well as a compact
Lie group. A totally disconnected, and locally connected space is discrete. By compactness, N0

is finite. Thus, we may choose m ≥ 0, so that N0 = Nn for all n ≥ m. □

Theorem 2.1.4 (Cartan’s Theorem). Suppose morphisms φn : G → Gn exhibit a topological
group G as an inverse limit G ∼= lim←−Gn of compact Lie groups Gn along surjections Gn−1 ↞ Gn.
Let L be a Lie group. Precomposition by the projections φn : G→ Gn induces a homeomorphism

colimn HomGrp(Gn, L)→ HomGrp(G,L)

for the compact-open topology on the set of continuous group homomorphisms.

Proof. The colimit is taken along open embeddings of unions of connected components, see
[Sch18, Proposition A.25.]. To see that the map is surjective, we need to see that any contin-
uous homomorphism α : G → L factors through some Gn. By Cartan’s theorem, the closed
subgroup G/ ker(α) ≤ L of the Lie group L is a Lie group itself. By [RZ00, Lem. 1.1.5.], the
map G/ ker(α) → lim←−G/(ker(φn) ker(α)) is surjective. Thus, the the latter inverse limit must
produce a compact Lie group and, therefore, stabilizes by Lemma 2.1.3. We find n ≥ 0 with
ker(φn) ker(α) ≤ ker(α), so that α factors through Gn. □

Example 2.1.5. If we write T for the 1-dimensional unitary group and (−)p : T → T for the
p-th power homomorphism, then the solenoid

Tp := lim←−

(
T (−)p←−−− T (−)p←−−− T (−)p←−−− T← · · ·

)
is an inverse limit along surjective homomorphisms of compact Lie groups. From Cartan’s
Theorem 2.1.4, we conclude that the Pontryagin dual T∗

p := HomGrp(Tp,T) is isomorphic to the
discrete topological group

Z[p−1] := colim(Z p·(−)−−−→ Z p·(−)−−−→ Z p·(−)−−−→ Z→ · · · ).

Example 2.1.6. Pontryagin duality [Pon34]

G 7→ G∗ := HomGrp(G,T)

defines an equivalence from the category of compact abelian Lie groups to the opposite of the
category of finitely generated abelian groups.

It follows from Theorem 2.1.4 that the Pontryagin dual G∗ := HomGrp(G,T) of any compactly
metrizable group G is isomorphic to an N-indexed colimit of finitely generated abelian groups,
equipped with the discrete topology. As any countable abelian group is isomorphic to an N-
indexed colimit of finitely generated abelian groups, Pontryagin duality defines an equivalence
from the category of compactly metrizable abelian groups to the opposite of the category of
countable discrete abelian groups, see [Mor77].

2.2. Functoriality of G-spaces (G-spectra) in the Compactly Metrizable Group G.

Construction 2.2.1. By Theorem 2.1.4, the topologically-enriched restricted Yoneda embed-
ding

Grp(CptMet)op → Fun(CptLie,Top), G 7→ HomGrp(G,−)
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factors through bi-fibrant objects in the projective Quillen model structure. By Theorem 2.1.4,
the induced1 functor on underlying ∞-categories, factors through the ∞-categorial Ind-category

Grp(CptMet)op → Ind(CptLieop) ⊆ Fun(CptLie,S). (4)

Here we use the same notation for a topological category and its homotopy-coherent nerve.

Definition 2.2.2. Passing to opposite categories in Equation (4) yields the pro-analogue functor
of ∞-categories

ν : Grp(CptMet)→ Pro(CptLie).

Unraveling the construction, if a topological group G is an Nop-indexed inverse limit along
surjective continuous homomorphisms of compact Lie groups Gn−1 ↞ Gn, then

ν(G)→ lim←− ν(Gn) = lim←−Gn (5)

is an equivalence of pro-objects.

Construction 2.2.3. We construct the genuine G-spaces (G-spectra) functors

S• : Pro(CptLie)op → PrL, G 7→ SG (6)

Sp• : Pro(CptLie)op → PrL, G 7→ SpG (7)

by uniquely extending the functors

CptLieop → PrL, G 7→ SG (8)

CptLieop → PrL, G 7→ SpG (9)

from [LNP25] in a filtered colimit preserving way to the Ind-category

Pro(CptLie)op := Ind(CptLieop).

In the compact Lie group case, the above functoriality of G-spaces is induced by restric-
tion/inflation along continuous homomorphisms of compact Lie groups. We will see in Sec-
tion 2.4.2 that the same is true for morphisms of compactly metrizable groups.

Definition 2.2.4. For G ∈ Grp(CptMet), we call SG := Sν(G) ∈ PrL the category of genuine

G-spaces and SpG := Spν(G) ∈ PrL the category of genuine G-spectra.

In Section 2.4.2 and Corollary 2.6.15, we construct preferred equivalences from the∞-category
of genuine G-spaces, respectively, genuine G-spectra to the underlying ∞-category of Fausk’s
model categories from [Fau08].

Remark 2.2.5. Fausk’s constructions [Fau08] apply to general compact Hausdorff groups. By
the Peter–Weyl theorem [BTD85, III.3.1.], a topological group G is compact Hausdorff if and
only if it can be expressed as an Iop-indexed limit of compact Lie groups for some filtered poset
I. The diligent reader will have little difficulty extending most of the results in Section 2 to this
more general setting. However, later in our discussion of equivariant formal group laws, the choice
of a complete flag is crucial for inductive arguments. Choosing such a flag for G requires that
the poset I be countable, or equivalently, that the topological group G be metrizable. Therefore,
we continue to assume that all compact Hausdorff groups under consideration are metrizable.

Convention 2.2.6. For a continuous group homomorphism φ : K → L of compactly metrizable
groups K,L ∈ Grp(CptMet), we have an induced functor φ∗ : SL → SK .

1The canonical morphism Nhc
(
FunTop(CptLie,Top

)◦
proj

) → Fun(Nhc(CptLie),S) is an equivalence of ∞-

categories by [Lur09, Prop. 4.2.4.4.].
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(1) If φ is surjective, we call the functor φ∗ inflation and write InflKL := φ∗. The right
adjoint of inflation is called ker(ϕ)-fixed points and denoted φ∗ : SK → SL.

(2) If φ is injective, we call the functor φ∗ restriction and write ResLK := φ∗. The right
adjoint of restriction is called co-induction and denoted φ∗ : SK → SL.

We introduce the same notation on the level of pointed objects SK,∗ and spectra SpK .

2.3. Genuine G-Spaces. Unraveling the construction, if a topological group G is an Nop-
indexed inverse limit along surjective morphisms compact Lie groups Gn−1 ↞ Gn, then the
inflations induce an equivalence

colimL

(
SG0

Infl
G1
G0

↪−−−−→ SG1

Infl
G2
G1

↪−−−−→ SG2

Infl
G3
G2

↪−−−−→ SG3

Infl
G4
G3

↪−−−−→ SG4
↪→ · · ·

)
→ SG (10)

of ∞-categories, where the colimit is taken in PrL. Thus, Yoneda extending the composite

OrbGn
→ SGn

InflG
Gn−−−−→ SG

exhibits SG as presheaves on colimn OrbGn . We proceed to give a description of the latter, which
only depends on G and not on the diagram of Gn’s.

Definition 2.3.1 (Lie(G) subgroups). Let G be a compactly metrizable group. We write Sub(G)
for the poset of closed subgroups of G. For a closed subgroup H ∈ Sub(G) we write H ∈ Lie(G) if
the G-action on the orbit G/H is inflated from an action by some Lie group. Phrased differently,
we have H ∈ Lie(G) if and only if there exists a normal subgroup N ⊴ G with N ≤ H, so that
the topological group G/N admits the structure of a Lie group.

Example 2.3.2. When G is profinite, then Lie(G) consists precisely of the open subgroups.

Lemma 2.3.3. Suppose morphisms φn : G → Gn exhibit a topological group G as an Nop-
indexed inverse limit G ∼= lim←−n

Gn along surjective continuous homomorphism Gn−1 ↞ Gn of

compact Lie groups. Let H ≤ G be a closed subgroup of G. Then, H ∈ Lie(G) if and only if
ker(φn) ≤ H for some n ∈ N.

Proof. Suppose N ≤ H is a normal subgroup of G with G/N a Lie group. By Theorem 2.1.4
applied to the quotient map G→ G/N , there exists n ∈ N with ker(φn) ≤ N ≤ H. □

Definition 2.3.4 (Orbit Category). Let G be a compactly metrizable group. The orbit category
OrbG is defined as the topological category with objects the orbit-spaces G/H for H ∈ Lie(G)
and hom-spaces the set of G-equivariant maps between theses orbit spaces equipped with the
compact-open topology. We use the same notation for OrbG as topological category, as well as
for the ∞-category OrbG obtained as homotopy-coherent nerve.

We emphasize that OrbG does not contain all quotients of closed subgroups of G, but only
those whose canonical G-action arises via inflation from a compact Lie group.

In the situation of Equation (10), the fully faithful functors OrbGn
↪→ OrbG assemble into an

equivalence of ∞-categories

colimn OrbGn → OrbG.

Indeed, the essential surjectivity follows from Lemma 2.3.3. In conjunction with the previous
discussion, we constructed a zig-zag of equivalences

SG
≃←− P(colimn OrbGn)

≃−→ P(OrbG) (11)

from the ∞-category of genuine G-spaces to presheaves on the orbit category.
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Construction 2.3.5 (Inflation as Kan-Extension). For a surjective homomorphism φ : K → L

of compactly metrizable groups with kernel N ∈ Sub(K), the composite OrbL → SL
InflK

L−−−→ SK ,
factors through

φ∗ : OrbL → OrbK , L/U 7→ K/φ−1(U) (12)

Indeed, unraveling the constructions, it suffices to check this for compact Lie groups. As φ∗ is
fully-faithful, its Yoneda extension

InflKL ≃ Lan(φ∗)op : SL ↪→ SK
is fully faithful, too. Moreover, the functor φ∗ admits an enriched left adjoint on the level of
topological categories

(−)/N : OrbK → OrbL, K/U 7→ L/φ(U).

Yoneda extending yields the quotient functor (−)/N : SK → SL, which is left adjoint to InflKL .
Moreover, under the description of G-spaces as category of presheaves, the fixed point functor
φ∗ : SK → SL identifies with precomposition by the opposite of φ∗.

Remark 2.3.6 (Large Orbits are Empty). Suppose surjective homomorphisms φn : G → Gn

exhibit a topological group as an Nop-indexed inverse limit of compact Lie groups. For any
H ∈ Sub(G), we may form the following inverse limit

(G/H)cont := lim←−
(
InflGG0

(G0/H0)← InflGG1
(G1/H1)← InflGG2

(G2/H2)← · · ·
)
∈ SG (13)

with Hn := φn(H) ≤ Gn. Let Nn := ker(φn) ⊴ G. When MapSG
(G/Nn, (G/H)cont) ̸= ∅ for

some n ∈ N, then NnNm ≤ HNm for all m ∈ N, so that Nn ≤ H, by [RZ00, Proposition 2.1.4.]2.
Thus, (G/H)cont ̸= ∅ in SG implies H ∈ Lie(G). In that case, the inverse limit (G/H)cont
stabilizes at G/H ∈ OrbG.

Construction 2.3.7 (Induction via Kan Extension). Suppose surjective homomorphisms φn :
G → Gn exhibit a topological group as an Nop-indexed inverse limit of compact Lie groups Gn

and let H ≤ G be a closed subgroup. For any U ∈ Lie(H), m ≥ n ≥ 0 and X ∈ SGn
one traces

through the functorialities3 to construct a preferred natural equivalence

MapSG

(
InflGGm

(Gm/Um), InflGGn
(X)

)
≃ MapSH

(
H/U,ResGH InflGGn

(X)
)
, (14)

for Um = φm(U) ≤ Hm := φm(H) ≤ Gm. Obverse that when U ∈ Lie(G), then InflGGm
(Gm/Um) =

G/U for m big enough. Passing to colimits in the space X and varying n ∈ N, we constructed
for any U ∈ Lie(G) ∩ Sub(H) an equivalence

MapSH
(H/U,ResGH(X)) ≃ MapSG

(G/U,X), (15)

naturally in X ∈ SG. In the case that H ∈ Lie(G), then Lie(H) ⊆ Lie(G), see [Fau08, Lem. 2.1.].

We conclude that the functor ResGH : SG → SH identifies with the functor P(OrbG)→ P(OrbH)
given by precomposition with the topologically-enriched functor

G×H (−) : OrbH → OrbG, H/U 7→ G/U. (16)

Via Yoneda-extending G×H (−), we obtain a left adjoint of ResGH : SG → SH , denoted

IndGH : SH → SG, H/U 7→ G/U. (17)

This left adjoint IndGH is called induction. For its construction, we used that H ∈ Lie(G).

2Their proof of [RZ00, Proposition 2.1.4.] generalizes verbatim from profinite to compact Hausdorff groups.
3In detail, one may use the two different factorizations of the group homomorphism H → Gn and then the

results discussed in Construction 2.3.5.
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Remark 2.3.8 (No Induction Possible). Suppose surjective morphisms φn : G→ Gn exhibit a
topological group G as an Nop-indexed inverse limit lim←−n

Gn of compact Lie groups Gn. Let us

write Nn := ker(φn) for the kernel of φn. Let H ∈ Sub(G) be a closed subgroup. Let us assume

that ResGH : SG → SH admits a left adjoint IndGH . As ResGH(−) preserves filtered colimits, its

left adjoint preserves compact objects. In particular, IndGH sends the terminal object ∗ ∈ SH to
some

IndGH(∗) = InflGGn
(X) ∈ SG

for some X ∈ SωGn
and n ∈ N. Unraveling the definition and applying Equation (14), for any

m ≥ n, we obtain an equivalence

MapSGm
(InflGm

Gn
X,Y ) ≃ MapSG

(
InflGGn

(X), InflGGm
(Y )
)
≃ MapSH

(
H/H,ResGH InflGGm

(Y )
)

(14)
≃ MapSG

(
InflGGm

(Gm/Hm), InflGGm
(Y )
)
≃ MapSGm

(Gm/Hm, Y )

naturally in Y ∈ SGm , where Hm := φm(H) ≤ Gm. By the Yoneda Lemma, InflGGn
(X) =

InflGGm
(Gm/Hm) = G/(HNm). As this was independent of the choice of m ≥ n, we have

HNn = HNm for all m ≥ n. As in Remark 2.3.6, we conclude Nn ≤ H, so that H ∈ Lie(G).

Lemma 2.3.9. Let G be a compactly metrizable group and H ∈ Lie(G) a subgroup. Let
φn : G → Gn be a surjective continuous group homomorphism and set Hn := φn(H) ≤ Gn. If
ker(φn) ≤ H, then the Beck-Chevalley transformation of the natural equivalence

InflGHn
◦ResGn

Hn

≃
==⇒ ResGH ◦ Infl

G
Gn

is an equivalence

IndGH ◦ Infl
H
Hn

≃
==⇒ InflGGn

IndGn

Hn

of functors SHn
→ SG.

Proof. Because all of the above functors preserve colimits, it suffices to check that the Beck-
Chevalley transformation is an equivalence on oribits Hn/K ∈ SHn

for K ∈ Lie(Hn). By the
description of induction and inflation as left Kan extensions, see (2.3.7) and (2.3.5), the Beck-
Chevalley transformation evaluates at Hn/K ∈ OrbHn

to the canonical map

G/(φ−1
n (K) ∩H)→ G/φ−1

n (K)

in OrbG. By assumption, we have φ−1
n (K) ≤ φ−1

n (Hn) = H, so that φ−1
n (K)∩H = φ−1

n (K). □

Definition 2.3.10 (Fixed Points). We write (−)G : SG → S for the right-adjoint of InflG1 (−).
More generally for, H ∈ Sub(G), we call the composite

(−)H : SG
ResGH−−−→ SH

(−)H−−−→ S (18)

H-fixed points.

Whenever H ∈ Lie(G), then the H-fixed point functor (−)H is co-represented by the orbit
G/H ∈ OrbG.

Lemma 2.3.11. Let φ : G → Gn be a surjective continuous homomorphism of compactly
metrizable groups. Let H ≤ G be a closed subgroup and Hn := φ(H) its image. Then, we
obtain a preferred equivalence (

InflGGn
(−)
)H
≃ (−)Hn (19)

of functors SGn → S.
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Proof. Unraveling Construction 2.3.5 we see that (−)H ◦ InflHHn
≃ (−)Hn , so that(

InflGGn
(−)
)H

= (−)H ◦ ResGH ◦ Infl
G
Gn
≃ (−)H ◦ InflHHn

◦ResGn

Hn
≃ (−)Hn ◦ ResGn

Hn
= (−)Hn ,

where we factored the group homomorphism H → Gn in two different ways. □

2.3.1. Based Genuine G-Spaces.

Construction 2.3.12. The functor S• : Pro(CptLie)op → PrL from Construction 2.2.3 admits a

lift along the forgetful functor CAlg(PrL)→ PrL, where for any G ∈ Pro(CptLie) the symmetric
monoidal structure on SG is cartesian. For G ∈ Pro(CptLie), we define the category of pointed
G-spaces SG,∗ as the value of the composite

S•,∗ : Pro(CptLie)op
S•−→ CAlg(PrL)

S∗⊗(−)−−−−−→ CAlg(PrL)

at G. The underlying ∞-category of SG,∗ ≃ (SG)∗/ canonically identifies with the category of
pointed objects in SG by [Lur17, Example 4.8.1.21].

Notation 2.3.13. For a compactly-metrizable topological group G we fix the following notation:

• The tensor product of pointed G-spaces is denoted by (−) ∧ (−).
• Following Convention 2.2.6, we analogously define restriction and inflation, in the based
setting and use the same notation for their right adjoints.

• Naturally in G ∈ Pro(CptLie)op, we have a symmetric monoidal functor

(−)+ : SG → SG,∗

whose right adjoint is the forgetful functor fgt : SG,∗ → SG from the slice.

The properties of the slice category imply the following facts:

(1) The forgetful functor fgt : SG,∗ → SG is conservative, detects compact objects, and
preserves weakly contractible colimits.

(2) For a continuous homomorphism φ : G→ K of compactly-metrizable groups, the induced
symmetric monoidal functor φ∗ : SK,∗ → SG,∗ satisfies

fgt ◦ φ∗ ≃ φ∗ ◦ fgt

because φ∗ : SK → SG preserves the point.
(3) For H ∈ Sub(G) the fixed point functor (−)H : SG,∗ → S is defined as the composite

SG,∗
fgt−−→ SG

(−)H−−−→ S .

The fixed point functor preserves weakly contractible colimits. When, H ∈ Lie(G), then
(−)H : SG,∗ → S is co-represented by G/H+. The objects {G/H+}H∈Lie(G) are jointly
conservative and generate SG,∗ under small colimits.

(4) For H ∈ Sub(G) the fixed point functor (−)H : SG,∗ → S has a unique lift along the
forgetful functor S∗ → S, given by the composite

(−)H : SG,∗
ResGH−−−→ SH,∗

(φ0)∗−−−→ S∗ (20)

for (φ0)∗ right adjoint to InflH1 : S∗ → SH .
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2.4. Classifying Spaces of Families. The following discussion closely parallels the compact
Lie group equivariant case.

Definition 2.4.1. A family F of subgroups of a compactly metrizable group G is a subset
F ⊆ Lie(G), which is closed under conjugation and subgroups. We write OrbG(F) ⊆ OrbG for
the full subcategory spanned by {G/U : U ∈ F}. We write SFG := P(OrbG(F)) for presheaves
on OrbG(F).

Example 2.4.2. If N ≤ G is the kernel of a surjective morphism φ : G → K of compactly
metrizable topological groups, the set PN := {U ∈ Lie(G) : N ≰ U} is a family of subgroups.

For the rest of Section 2.4 we fix a family F of subgroups of a compactly metrizable group G.

Construction 2.4.3. Yoneda-extending OrbG(F)→ OrbG yields a fully faithful functor

i : SFG ↪→ SG with colimit preserving right adjoint Ψ : SG → SFG .

By construction, we have (i ◦Ψ(X))U = XU for all U ∈ F and X ∈ SG.

Definition 2.4.4. A G-space X ∈ SG is called F-torsion if X is in the essential image of
i : SFG ↪→ SG. The full subcategory spanned by F-torsion spaces is denoted (SG)F -tors ⊆ SG.

The subcategory (SG)F -tors is the smallest full subcategory of SG, which contains OrbG(F)
and is closed under colimits.

Lemma 2.4.5. A G-space X ∈ SG is F-torsion if and only if XU = ∅ for all U ∈ Lie(G) \ F .

Proof. If U ∈ Lie(G) and W ∈ F , such that there exists gW ∈ (G/W )U , then g−1Ug ≤ W
implies U ∈ F . Thus, the pointwise formula for left Kan extension implies that (iΨ(X))U is a
colimit of constant diagram at the initial object ∅, whenever U /∈ F . □

Definition 2.4.6. We define the classifying space E F ∈ SG of the family F as the terminal
object of (SG)F −tors.

The classifying space E F ∈ SG is uniquely determined by its fixed points

(E F)U =

{
∗, U ∈ F
∅, U /∈ F .

Remark 2.4.7. The endofunctor Ψ ◦ i is equivalent to E F ×(−). Under this equivalence, the

co-unit at X ∈ SG identifies with E F ×X pr−→ X.

Remark 2.4.8. The functor SFG =
(
SFG
)
/ ∗

i−→ (SG)/E F is an equivalence of categories.

Construction 2.4.9. We view SFG as cartesian monoidal and endow SFG,∗ ≃ SFG ⊗L S∗ with

the tensor-product algebra structure in PrL. The functor Ψ : SG → SFG induces a symmetric
monoidal left-adjoint functor

Ψ : SG,∗ → SFG,∗

which commutes with forgetting the base-point. By [Lur09, 5.2.5.1.], Ψ admits a left adjoint,

denoted i∗, that sends (∗ f−→ X) ∈ SFG,∗ to the cofiber of i(f) : E F → i(X). In particular, the
endo-functor

i∗ ◦Ψ : SG,∗ → SG,∗, is equivalent to X 7→ E F+ ∧X.

Under this equivalence, the co-unit identifies with the projection E F+ ∧X → X.

As i : SFG → SG preserves products, we conclude
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Lemma 2.4.10. The functor i∗ : SFG,∗ → SG,∗ is symmetric monoidal and fully-faithful. For

X ∈ SG,∗, the co-unit induces an equivalence (i∗ ◦ Ψ(X))U → XU for all U ∈ F . The co-unit
i∗ ◦Ψ(X)→ X is an equivalence if and only if XU = ∗ for all U /∈ F .

Definition 2.4.11. We say that X ∈ SG,∗ is F−1-local if E F+ ∧X is a terminal object. Equiv-

alently, we may demand that XU ≃ ∗ for all U ∈ F . We write SG,∗[F−1] ⊆ SG,∗ for the

full-subcategory spanned by F−1-local objects.

Observation 2.4.12. The category SG,∗[F−1] ⊆ SG,∗ is closed under both limits and colimits.

Definition 2.4.13. We define Ẽ F ∈ SG,∗ via the cofiber sequence

E F+ −→ S0 e−−→ Ẽ F

of pointed G-spaces. From the definitions we deduce the following Lemma 2.4.14.

Lemma 2.4.14. For X ∈ SG,∗ the morphism X
e∧1−−→ Ẽ F ∧X serves as a unit for a left adjoint

of the inclusion SG,∗[F−1] ⊆ SG,∗. This unit induces an equivalence on U -fixed points for all
U /∈ F .

In particular, S0 e−→ Ẽ F exhibits Ẽ F as an idempotent algebra in SG,∗.

Example 2.4.15. In the situation of Example 2.4.2, the N -fixed-point functor φ∗ : SG,∗ → SK,∗,

i.e. the right adjoint to inflation InflGK , induces an equivalence

φ∗(X)
e∧1−−→ φ∗(Ẽ PN ∧X)

for all X ∈ SG,∗. Indeed, this can be checked on fixed points and, similarly, the counit induces
an equivalence

Ẽ PN ∧ InflGK(φ∗(X))
≃−−→ Ẽ PN ∧X.

We deduce that the composite

SK,∗
InflG

K(−)−−−−−→ SG,∗
Ẽ PN∧(−)−−−−−−−→ SG,∗

defines a fully faithful right adjoint of the N -fixed point functor φ∗ : SG,∗ → SK,∗. A pointed

G-space X ∈ SG,∗ is in the essential image of the right adjoint of φ∗ if and only if X is P−1
N -local.

2.4.1. Families for Pro Compact Lie Groups. We assume, that a set of surjective group homo-
morphisms φn : G ↠ Gn exhibit a topological group G as the following inverse limit

lim←−
(
G0

ϕ0←− G1
ϕ1←− G2

ϕ3←− G3
ϕ4←− · · ·

)
(21)

in the category of topological groups, with each Gn ∈ CptLie a compact Lie group.

Definition 2.4.16. For any family of subgroups F ⊆ Lie(G), in the sense of Definition 2.4.1,
we call the family

Fn := {U ≤ Gn : φ−1
n (U) ∈ F} ⊆ Sub(Gn)

of subgroups of Gn the nth-stage of F .

Example 2.4.17. If N ≤ G is a closed normal subgroup of G, and F = PN is the family from
Example 2.4.2, then the two families Fn = PNn

coincide for Nn := φn(N). In particular, if F is
the family of H ∈ Lie(G) with H ̸= G, then Fn ⊆ Sub(Gn) is the family of proper subgroups.
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Because φn is surjective, the set Fn ⊆ Sub(Gn) is a family of subgroups of Gn, in the sense
of Definition 2.4.1. Moreover, as full subcategories of the orbit category OrbG, we have

OrbG(F) ∩ InflGGn
(OrbGn) = InflGGn

(OrbGn(Fn)) = {G/φ−1
n (U) : U ∈ Fn}.

By definition of the family Lie(G) ⊆ Sub(G), we see that the inflations InflGGn
: OrbGn

(Fn) →
OrbG(F) exhibit the ∞-category OrbG(F) as the colimit of the diagram

OrbG0
(F0) ↪→ OrbG1

(F1) ↪→ OrbG2
(F2) ↪→ OrbG3

(F3) ↪→ · · ·

in Cat∞. We conclude that the unique map of G-spaces

colimn Infl
G
Gn

(E Fn)→ E F (22)

is an equivalence. Moreover, the inflations InflGGn
: (SGn

)Fn -tors → (SG)F -tors exhibit the full
subcategory (SG)F -tors ⊆ SG of F -tors spaces as the colimit of the diagram

colimL ((SG0)F0 -tors ↪→ (SG1)F1 -tors ↪→ (SG2)F2 -tors ↪→ · · · )
≃−−→ (SG)F -tors (23)

in the category of presentable ∞-categories and left adjoint functors PrL.

We defined the pointed G-space Ẽ F as the cofiber of (E F)+ → S0. The equivalence (22)
induces an equivalence of pointed G-spaces

colimn Infl
G
Gn

(
Ẽ Fn

)
≃−−→ Ẽ F (24)

under S0 ∈ SG,∗.

2.4.2. The Model Structure on Topological G-Spaces. Before we conclude our discussion of un-
stable equivariant homotopy theory, we would like to recall the connection to topological spaces
with a group action. For this purpose, consider a compactly metrizable topological group G and
F ⊆ Lie(G) a family of subgroups. We let TopG denote the (topological) category of compactly
generated weak Hausdorff topological G-spaces.

Proposition 2.4.18 ([Sch18, Proposition B.7.]). A G-map f ∈ TopG(X,Y ) is called an F-
equivalence (F-fibration) if for all H ∈ F the map induced on fixed points fH : XH → Y H is a
weak-equivalence (Serre fibration) of topological spaces.

(i) The F-equivalences and F-fibrations form the weak equivalences and fibrations of a
proper, topological, cellular model structure on the category TopG of G-spaces, the F-
projective model structure, where all objects of TopG are F-fibrant.

(ii) The set of maps

IF := {G/H × ik : G/H × ∂Dk → G/H ×Dk}k≥0,H∈F (25)

serves as a set of generating cofibrations for the F-projective model structure. The set
of maps

JF = {G/H × jk : G/H ×Dk × {0} → G/H ×Dk × [0, 1]}k≥0,H∈F

serves as a set of generating acyclic cofibrations.
(iii) Equivariant Whitehead Theorem: Two maps are left homotopic in the F-projective model

structure on TopG if and only if there is a homotopy H : f ≃ g in Top such that Ht is
G-equivariant for all t ∈ [0, 1]. In particular, a G-map f : X → Y between F-cofibrant
G-spaces is a F-equivalence if and only if f has a homotopy inverse established via G-
equivariant homotopies.
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Proposition 2.4.19 (Elmendorf’s Theorem, [LNP25, Theorem 3.39.]). Yoneda extending the
inclusion OrbG(F)→ TopG induces an equivalence

SFG := P(OrbG(F))
≃−−→ (TopG)

F,◦

of ∞-categories. Here, (TopG)
F,◦ denotes (the homotopy-coherent nerve of) the topological sub-

category of TopG spanned by F-cofibrant G-spaces.

Proof. The following fact can be extracted from [Sch18, Appendix B.]: The orbits G/H for
H ∈ F form a jointly conservative set of tiny objects4 in the ∞-category (TopG)

F,◦. It is a
formal consequence from this, that the above functor out of P(OrbG(F)) is an equivalence of
∞-categories, see [LNP25, Theorem 3.39.]. □

Remark 2.4.20. Consider the localization TopG[F −equiv.−1], in the ∞-categorical sense, of
the 1-category of F-cofibrant G-spaces by the F-equivalences. Dwyer and Kan, see [Lur17,
Theorem 1.3.4.20.], established that the canonical functor

TopG[F −equiv.−1]
≃−−→ (TopG)

F,◦

is an equivalence of ∞-categories.

A continuous homomorphism α : K → G between compactly metrizable groups gives rise to
Top-enriched adjoint functors between the associated category of equivariant spaces

TopG TopK
α∗

G×α(−)

Homα(G,−)

and [Fau08, Lemma 2.2.] reads:

Proposition 2.4.21. Let F ⊆ Lie(K) and G ⊆ Lie(G) be families of closed subgroups and equip
TopK and TopG with the F-projective (respectively, G-projective) model structure.

(a) If α(F) ⊆ G, then α∗ preserves fibrations and weak-equivalences. In particular, the
adjoint pair (G×α −, α∗) is Quillen.

(b) If α−1(G) ⊆ F , then the adjoint pair (α∗,Homα(G,−)) is also Quillen.

Remark 2.4.22. If we are in the special situation that F = Lie(K) and G = Lie(G), then
α−1(G) ⊆ F is automatic and α(F) ⊆ G holds if and only if Im(α) ∈ Lie(G).

Under Elmendorf’s theorem, the above Quillen functors agree with our previous constructions:

(a) If Im(α) ∈ Lie(G), then the left adjoint of the functor of ∞-categories α∗ : SG → SK
from Convention 2.2.6 is given by left Kan extension along G ×α (−) : OrbK → OrbG,
see 2.3.5 and 2.3.7. If, additionally, α(F) ⊆ G, then, the left Kan extension restricts to a
left adjoint functor SFK → S

G
G. This functor is canonically equivalent to the left adjoint

functor induced from the Quillen adjunction of Proposition 2.4.21 a). Indeed, both of
these functors are left Kan extended from the same functor OrbK(F)→ OrbG(G).

(b) If α−1(F) ⊆ G, then the functor of ∞-categories α∗ : SG → SK from Construction 2.2.3
restricts to a functor SGG → SFK which is canonically equivalent to the functor induced
from the Quillen adjunction of Proposition 2.4.21 (b). Indeed, these functors agree, when
restricted to OrbG(F).

2.5. Equivariant Principal Bundles and Universes.

4An object of an ∞-category C is called tiny if the functor C → S co-represented by that object preserves
small colimits.
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2.5.1. Equivariant Principal Bundles. We recollect the conclusions from [LU14] and translate
them into our language. Most results go back at least to [Las82, Lashof]. In this Section 2.5.1,
we fix both a compact Lie group L and a compactly metrizable group G.

Definition 2.5.1. A G-equivariant L-principal bundle is a morphism p : E → B in TopG×L s.t.

(1) B ∼= InflG×L
G (X) for some Lie(G)-cofibrant X ∈ TopG, and,

(2) the L-equivariant map ResG×L
L (p) : E → B is an L-principal bundle.

The G-equivariant L-principal bundles span a full topological subcategory

BunTop(G,L) ⊆ Fun([1],TopG×L).

We write Bun(G,L) := Nhc
(
BunTop(G,L)

)
for the ∞-category of G-equivariant L-principal bundles.

Definition 2.5.2 (Graph Subgroups). For a compact Lie group L, a compactly metrizable group
G, a subgroup H ∈ Lie(G) and a continuous group homomorphism α : H → L, we write

Γ(α) := {(h, α(h)) : h ∈ H} ≤ G× L

for its graph subgroup.

By Theorem 2.1.4, ker(α) ∈ Lie(G), so that Γ(α) ∈ Lie(G × L). The collection of all graph
subgroups form a family FΓ of subgroups of G× L.

Proposition 2.5.3. Let p : E → B be a G-equivariant L-principal bundle, then E ∈ TopG×L is
FΓ-cofibrant.

Proof. We call a Lie(G)-cofibrant space B good if the statement holds for all G-equivariant L-

principal bundles over B. If B = InflGGn
(Gn/Hn)×Z for Gn a compact Lie group, Hn ∈ Lie(Gn)

and Z ∈ Top a cofibrant non-equivariant space, then by [LU14, Lemma 6.2.], there exists a
continuous homomorphism α : Hn → L and a (Gn × L)-homeomorphism (Gn ×α L) × Z → E
over the quotient map to B. We conclude that any pushout of base spaces along a generating
cofibration5 f ∈ ILie(G) pulls back to a pushout of total spaces along a generating cofibration
f ′ ∈ IFΓ

. In particular, the class of good B is closed under pushouts along the generating
Lie(G)-cofibrations f ∈ ILie(G). Similarly, we deduce that a filtered colimit along pushouts of
morphisms in ILie(G) on base spaces pulls back to a filtered colimit along pushouts of morphisms
in IFΓ

on total spaces. It remains to be proven that the class of good B is closed under retracts.

We may pull back a bundle p : E → B along a G-map B′ r−→ B, to exhibit the total space E as
a retract of a FΓ-cofibrant space, whenever B′ is good and r admits a section. □

Proposition 2.5.4. For any E ∈ TopG×L which is FΓ-cofibrant, the counit p : E → E/L is a
G-equivariant L-principal bundle.

Proof. By Proposition 2.4.21, it remains to be shown that ResL(p) is an L-principle bundle. We
first treat the case that E = [(G × L)/Γ(α)] × Z for some non-equivariant cofibrant Z ∈ Top,
where α : H → L is a continuous group-homomorphism for H ∈ Lie(G). We chose some normal
subgroupN ⊴ G so thatGn := G/N is a compact Lie-group withN ≤ H. Then, G/H = Gn/Hn,
where Hn := H/N ≤ Gn, and E is inflated from the (Gn × L)-space E′ := (Gn ×α L)× Z. The
quotient map E′ → E′/L is an L-principle bundle by Palais slice theorem, see [LU14, Lemma
5.1.]. We conclude that the class of good E ∈ TopG×L, i.e. those for which the conclusion
holds, is closed under pushouts along the generating FΓ-cofibrations IFΓ from Equation (25).
The class of good E ∈ TopG×L is also closed under filtered colimits along pushouts along the
generating FΓ-cofibrations: Indeed, L-principal bundles are stable under filtered colimits along

5See Equation (25) for the definition of ILie(G).
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cofibrations of underlying topological spaces. Lastly, consider (G× L)-maps E
s−→ E′ r−→ E with

good F-cofibrant E′ and rs = id. Then, a local trivialization of E′ → E′/L restricts along s to
a local trivialization of E → E/L. □

Construction 2.5.5. We obtain topologically enriched functors

(TopG×L)
FΓ,◦ → BunTop(G,L), E 7→ (E → E/L) and

BunTop(G,L) → (TopG×L)
FΓ,◦, (E

p−→ B) 7→ E,

where the composite (TopG×L)
FΓ,◦ → (TopG×L)

FΓ,◦ is equal to the identity functor. The
quotient-inflation adjunction 2.4.21 provides us with a homeomorphism E/L → B under E,
naturally in the G-equivariant L-principal fibration p : E → B.

Corollary 2.5.6. The functors from Construction 2.5.5 are mutually inverse topologically en-
riched functors, establishing an equivalence of topological categories

BunTop(G,L)
∼= (TopG×L)

FΓ,◦ , which induces an equivalence Bun(G,L) ≃ SFΓ

G×L

of ∞-categories.

Definition 2.5.7. We denote a classifying space for the graph family FΓ by EGL ∈ SG×L. We
call BG(L) := (EGL)/L ∈ SG the classifying space for G-equivariant L-principal bundles.

Construction 2.5.8. By [Lur09, 5.2.5.1.], the composite functor

(−)/L : SFΓ

G×L ≃ (SG×L)/EGL

(−)/L−−−−→ (SG)/BG(L)

is canonically left adjoint to the composite

(SG)/BG(L)

InflG×L
G−−−−−→ (SG×L)/ InflG×L

G (BG(L)) −→ (SG×L)/EGL ≃ S
FΓ

G×L,

where we pull back along the adjunction unit EGL→ InflG×L
G (BG(L)).

Proposition 2.5.9. The adjunction from Construction 2.5.8 defines an adjoint equivalence

SFΓ

G×L ≃ (SG)/BG(L) over SG.

Proof. The unit evaluates at E ∈ SFΓ

G×L to the canonical map E → (E/L) ×BG(L) EGL. By
Corollary 2.5.6, this identifies with a morphism of principle bundles over the same base, so it is
a homeomorphism. Conversely, if X ∈ (TopG)

Lie(G),◦ and f : X → BG(L) is continuous G-map,
we obtain a G-equivariant L-principle bundle f∗(EGL) → X. The counit evaluates at f to the
induced homeomorphism (f∗(EGL)) /L→ X. □

Construction 2.5.10. The composite equivalence

Bun(G,L) ≃ SFΓ

G×L ≃ (SG)/BG(L)

of categories over SG implies that we can straighten the functor

Bun(G,L) → SG, (E → X) 7→ X

to a functor

(SG)op → S, X 7→ Bun(G,L)(X),

which assigns to X, the space

Bun(G,L)(X) := Bun(G,L)×SG
{X}

of G-equivariant L-principle bundles over X. Moreover, the following holds:
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Corollary 2.5.11. The functor Bun(G,L)(−) : (SG)op → S is represented by the classifying space
BG(L) ∈ SG together with the universal G-equivariant L-principal bundle EGL→ BG(L).

Note that for a Lie(G)-cofibrant space X, the set

Bun(G,L)(X)/iso := π0 Bun(G,L)(X)

consists of isomorphism classes of G-equivariant L-principal bundles. The π0-version of Corol-
lary 2.5.11 is the following

Proposition 2.5.12. Let X ∈ TopG be Lie(G)-cofibrant. Then,

[X,BG(L)]
G → Bun(G,L)(X)/iso, f 7→ f∗(EGL)

defines a bijection from the set of G-equivariant homotopy classes of maps to the set of isomor-
phism classes of G-equivariant L-principle bundles on X.

2.5.2. Stages of the Family of Graph Subgroups for Pro Compact Lie Groups. Let L be a compact
Lie group and let morphisms φn : G ↠ Gn exhibit a topological group G as an Nop-indexed in-
verse limit along surjective morphisms Gn−1 ↞ Gn of compact Lie groups. Then, the morphisms
φn × id : G× L→ Gn × L exhibit the product G× L as the inverse limit

G× L ∼= lim←−
n

(Gn × L)

of topological groups, with each Gn × L a compact Lie group. Recall that for any family of
subgroups F ⊆ Lie(G×L) we defined the n-th stage of F in Definition 2.4.16. We are interested
in the case that F = FΓ ⊆ Lie(G × L) is the family of graph subgroups of G × L, in the sense
of Definition 2.5.2.

Lemma 2.5.13. The n-th stage of the family of graph subgroups FΓ of G× L is the family of
graph subgroups FΓn

of Gn × L.

Proof. Note that U ≤ Lie(G×L) is a graph subgroup if and only if for all l ∈ L we have (1, l) ∈ U
implies l = 1. Applying the same characterization for graph subgroups of Gn×L, the statement
readily follows. □

We conclude from Equation (22), that the unique map

colimn Infl
G×L
Gn×L (EGn

L)
≃−−→ EGL (26)

in SG×L is an equivalence.

Lemma 2.5.14. The Beck-Chevalley transformation of the equivalence

InflG×L
Gn×L ◦ Infl

Gn×L
Gn

=⇒ InflG×L
G ◦ InflGGn

is an equivalence

(−)/L ◦ InflG×L
Gn×L

≃
==⇒ InflGGn

◦(−)/L

of functors SGn×L → SG.

Proof. Unraveling Construction 2.3.5, we see that the Beck-Chevalley transformation evaluates
on the orbit of K ≤ Gn × L to the canonical map

G/
(
prG

(
(φn × id)−1(K)

))
→ G/φ−1

n

(
prGn

(K)
)

in OrbG. The inclusion of subgroups inducing that map is an equality. Because all of the above
functor preserves colimits, the result follows. □
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Applying (−)/L : SG×L → SG to the equivalence in Equation (26) yields an equivalence

colimn Infl
G
Gn

(BGn
(L))

≃−→ BG(L) (27)

of G-spaces, where we employed Lemma 2.5.14.
By Equation (23), the top horizontal arrow in the following diagram

colimL (SGn×L)/EGnL
(SG×L)/EGL

colimL (SGn)/BGn (L) (SG)/BG(L)

(−)/L

is an equivalence in PrL. By Proposition 2.5.9, the vertical arrows in the previous diagram,
induced by taking quotients by the L-action, are equivalences. The diagram commutes by
Lemma 2.5.14, and, therefore, the lower horizontal functor is an equivalence, as well.

2.5.3. G-universes. Let G be a compactly metrizable topological group.

Definition 2.5.15. A complete G-universe UG is an orthogonal G-representation of countable
dimension, such that, for any finite-dimensional orthogonal G-representation V , any countable
infinite direct sum of copies of V isometrically G-linearly embeds into UG.

Construction 2.5.16. If the topological group G is an Nop-indexed inverse limit along surjective
morphisms Gn−1 ↞ Gn of compact Lie groups, then we may construct the countably-dimensional
orthogonal G-representation

U := colimn (UG0
→ UG1

→ UG1
→ · · · ) , (28)

where the morphism UGi → UGi+1 is an isometric and Gi+1-linear embedding of an inflated
complete Gi-universe UGi

into a complete Gi+1-universe UGi+1
. By Theorem 2.1.4, any finite-

dimensional orthogonal G-representation is inflated from a Gn-representation for some n ≥ 0.
We conclude that U is a complete G-universe.

Corollary 2.5.17. Let H ≤ G be a closed subgroup of a compactly metrizable group G. Then
any restricted G-universe ResGH(UG) is a complete H-universe.

Proof. If morphisms φn : G→ Gn exhibit the topological group G as Nop-indexed inverse limit
along surjective morphisms Gn−1 ↞ Gn of compact Lie groups, then the morphism H → lim←−n

Hn

is an isomorphism, as well, for Hn := φn(H) ≤ Gn, by [RZ00, Corollary 1.1.8.]. Consequently,
we may employ Construction 2.5.16 to reduce to the well-known compact Lie group case, see
[Sch18, Remark 1.1.13.]. □

Convention 2.5.18. We topologize an infinite-dimensional orthogonal representation as colimit
of its finite-dimensional subspaces.

Definition 2.5.19. Let G and L be compactly metrizable topological groups. For an orthogonal
L-representation V and an orthogonal G-representation U , we write L(V,U) for the (G×L)-space
of linear isometric embeddings of V into U .

The proof of [GJMS86, Lemma 1.5.] carries over to our situation:

Lemma 2.5.20. Suppose V and U are orthogonal G-representations such that a countable
infinite direct sum of copies of V isometrically G-linearly embeds into U . Then, the G-space
L(V,U) is contractible via a G-equivariant homotopy. In particular, a complete G-universe is
unique up to contractible choice.



22 FORMAL GROUP LAWS AND STABLE HOMOTOPY THEORY OVER PROFINITE ABELIAN GROUPS

2.5.4. A Convenient Model for Equivariant Classifying Spaces.

Lemma 2.5.21 ([Sch18, Proposition 1.1.26.]). Let G be a compactly metrizable group. Let
V be a finite-dimensional faithful orthogonal representation of a compact Lie group L. Then
L(V,UG) is a FΓ-cofibrant replacement of the point ∗ ∈ TopG×L.

Proof. We assume that the topological group G is an Nop-indexed inverse limit along surjective
morphisms Gn−1 ↞ Gn of compact Lie groups. By [Sch18, Proposition 1.1.26.], the (L × Gn)-
space L(V,UGn) has the required property. It follows from [Sch18, Proposition 1.1.19.], that
L(V,UGn) → L(V,UGn+1) is a Lie(G × L)-cofibration. We conclude that colimn L(V,UGn)

∼=
L(V,UG) is Lie(G × L)-cofibrant. To conclude that the G × L-space L(V,UG) is a classifying
space for the family of graph subgroups, we check on fixed point functors, which preserve filtered
colimits, to reduce to Schwede’s result [Sch18, Proposition 1.1.26.] in the compact Lie group
case. □

We conclude that the quotient map L(V,UG)→ L(V,UG)/Lmodels the universalG-equivariant
L-principal bundle EGL→ BG(L).

Example 2.5.22. For L = O(n) an orthogonal group, we deduce that

γn : L(Rn,UG)×O(n) Rn → Grn(UG)

models the universal G-equivariant n-dimensional real vector bundle.

Observation 2.5.23. The previous arguments carry over to a unitary complete G-universe UC
G

and a faithful complex L-representation V .

Example 2.5.24. For L = U(n) an unitary group, we deduce that

γC
n : L(Cn,UG)×U(n) Cn → Grn(UC

G)

models the universal G-equivariant complex n-dimensional vector bundle.

2.6. Genuine G-Spectra. Suppose surjective morphisms G ↠ Gn exhibit a topological group
G as an Nop-indexed limit G ∼= lim←−Gn with each Gn a compact Lie group. Unraveling Defini-

tion 2.2.4, the inflations InflGGn
: SpGn

→ SpG induce an equivalence

colimL

(
SpG0

Infl
G1
G0−−−−→ SpG1

Infl
G2
G1−−−−→ SpG2

Infl
G3
G2−−−−→ SpG3

Infl
G4
G3−−−−→ SpG4

→ · · ·

)
≃−→ SpG (29)

of ∞-categories. Here the colimit is taken in the category PrL of presentable ∞-categories and
left adjoint functors. The diagram in Equation (29) factors through the subcategory PrL,ω ⊆
PrL spanned by presentable compactly generated categories and left adjoint compact object
preserving functors. It follows from [Lur09, Proposition 5.5.7.6.] and the remark in [Lur09,

Notation 5.5.7.7.] that PrL,ω → PrL preserves filtered colimits. By [Lur09, Proposition 5.5.7.8.]
and [Lur17, Lemma 7.3.5.10.], taking compact object defines a filtered colimit preserving functor

(−)ω : PrL,ω → Cat∞ to the category of small categories. We conclude the following:

Lemma 2.6.1. Suppose surjective group homomorphisms G ↠ Gn exhibit a topological group
G as an Nop-indexed limit G ∼= lim←−Gn with each Gn a compact Lie group. Then, the inflations

InflGGn
: SpωGn

→ SpωG exhibit the category SpωG of compact G-spectra as the filtered colimit

colim

(
SpωG0

Infl
G1
G0−−−−→ SpωG1

Infl
G2
G1−−−−→ SpωG2

Infl
G3
G2−−−−→ SpωG3

Infl
G4
G3−−−−→ SpωG4

→ · · ·

)
≃−→ SpωG (30)
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where the colimit can by computed in the category Cat∞ of small ∞-categories. Moreover, the
inclusion SpωG → SpG extends to a unique filtered colimit preserving functor Ind(SpωG) → SpG,

which is an equivalence Ind(SpωG)
≃−→ SpG of ∞-categories.

Proof. The last statement follows from [Lur09, Proposition 5.5.7.10.]. □

Lemma 2.6.2. Suppose surjective group homomorphisms G ↠ Gn exhibit a topological group
G as an Nop-indexed limit G ∼= lim←−Gn with each Gn a compact Lie group. Let X ∈ SpωGn

be a compact Gn-spectrum. Then, for any Gn-spectrum Y ∈ SpGn
, the inflations induce an

equivalence

colim
m≥n

mapSpGm
(InflGm

Gn
(X), InflGm

Gn
(Y ))→ mapSpG

(InflGGn
(X), InflGGn

(Y ))

of mapping spectra.

Proof. By passing to filtered colimits in Y , we may assume that Y is compact, as well. Moreover,
it suffices to prove the result on mapping spaces, because we may suspend Y to get to the negative
homotopy groups of the mapping spectrum. The result follows by applying the formula for
mapping spaces in filtered colimits of ∞-categories, see [BBB24, Lemma 2.3.], to the description
of compact G-spectra in Equation (30). □

Construction 2.6.3. Recall from [LNP25] that the functor Sp• : CptLieop → PrL lifts to a

functor Sp⊗• : CptLieop → CAlg(PrLst), encoding the smash product of equivariant spectra. The

forgetful functor CAlg(PrLst)→ PrL preserves filtered colimits. Thus, the unique functor

Sp⊗• : Pro(CptLie)op → CAlg(PrLst)

extending the functor Sp⊗• : CptLieop → CAlg(PrLst) from [LNP25] in a filtered colimit preserving

way lifts the functor Sp• : Pro(CptLie)op → PrL. In particular, we may view Equation (29) as a

colimit diagram in CAlg(PrLst).

Notation 2.6.4. For a compactly metrizable topological group G we fix the following notation:

• The smash product of G-spectra, constructed in Construction 2.6.3, is denoted by

(−)⊗ (−) : SpG×SpG → SpG .

The tensor unit of G-spectra is denoted by

S := InflG1 (S) ∈ SpG .

• Following Convention 2.2.6, we use the same notation for inflation and restriction, as
well as their right adjoints, as we did in the unstable setting.

• For H ∈ Sub(G), we call the composite

(−)H : SpG
ResGH−−−→ SpH

mapSpH
(S,−)

−−−−−−−−−→ Sp

categorical H-fixed points.
• Naturally in G ∈ Pro(CptLie)op, we obtain a natural symmetric monoidal functor

Σ∞ : SG,∗ → SpG

by extending the natural transformation Σ∞ : S•,∗ → Sp•,∗ of functors CptLieop →
CAlg(PrL) from CptLieop to its Ind-category Pro(CptLie)op, see [LNP25, Remark 10.7.].
By this construction, restriction-inflation commutes with suspension Σ∞. Moreover, the
suspension functor Σ∞ preserves compact objects, as the whole construction factors
through CAlg(PrL,ω).
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For a compact Lie group G, the smallest subcategory of SpG containing {Σ∞
+ G/H}H∈Lie(G),

which is closed under shifts and small colimits, is SpG, itself. From Lemma 2.6.1, we deduce that
the same holds for all G ∈ Grp(CptMet). Because SpG is presentable, this property is equivalent
to the following:

Proposition 2.6.5 (Generation By Orbits). For any compactly metrizable group G, the set
{Σ∞

+ G/H}H∈Lie(G) of compact objects generates SpG, in the sense that for all X ∈ SpG

mapSpG
(Σ∞

+ G/H,X) ≃ 0 ∈ Sp for all H ∈ Lie(G) implies X ≃ 0 ∈ SpG . (31)

Definition 2.6.6. Recall that a category C ∈ CAlg(PrLst) is called rigidly compactly generated,
if C is compactly generated and an object X ∈ C is dualizable if and only if X ∈ Cω is compact.
We write RigL for the full subcategory of CAlg(PrL) consisting of rigidly compactly generated
categories.

Note that a morphism in RigL preserves dualizable and thus compact objects.

Lemma 2.6.7. The functor Sp⊗• : Pro(CptLie)op → CAlg(PrL) factors through RigL.

Proof. Let G be a compactly metrizable group. Because the unit S ≃ Σ∞
+ (∗) ∈ SpG is compact,

all dualizable G-spectra are compact. In light of Proposition 2.6.5, it suffices to see that all
suspensions of orbits Σ∞

+ G/H of closed subgroups H ≤ G with H ∈ Lie(G) are dualizable.
The G-spectrum Σ∞

+ G/H is inflated from the suspension of an orbit Σ∞
+ Gn/Hn of some Hn ∈

Sub(Gn) along a surjective morphism G → Gn to a compact Lie group Gn. As the inflation

functor InflGGn
(−) is symmetric monoidal, the result follows from the compact Lie group case,

see [GJMS86, Chapter III.]. □

2.6.1. Inverting Representation Spheres.

Remark 2.6.8. Suppose surjective morphisms G ↠ Gn exhibit a topological group G as an
Nop-indexed limit lim←−n

Gn of compact Lie groups Gn. For a d-dimensional real G-representation

V , we may choose a G-invariant inner product on V , by compactness of G. By Theorem 2.1.4,
the group homomorphism V : G → O(d) encoding matrices of the G-action on an orthogonal
basis of V factors as

G→ Gn
W−→ O(d)

for some n ∈ N and some Gn-representation W : Gn → O(d) . Hence, the topological G-spaces

SV and InflGGn
(SW ), obtained by one point compactification of V and W , respectively, agree.

Definition 2.6.9 (Representation Sphere). For a compactly metrizable group G and a finite
dimensional G-representation V , we define the representation sphere SV ∈ SG,∗ as the genuine

G-equivariant homotopy type of the one point compactification SV ∈
(
TopG,∗

)Lie(G),◦
of V .

Proposition 2.6.10 (Universal Property of SpG). Let G be a compactly metrizable group and

(C,⊗) ∈ CAlg(PrL). Any symmetric monoidal left adjoint functor SG,∗ → C, which sends the
representation sphere of any finite dimensional G-representation to an ⊗-invertible object, factors
uniquely through the suspension functor Σ∞ : SG,∗ → SpG.

The compact Lie group version of this Proposition is [GM23, Corollary C.7.].

Proof. We may assume that the topological group G is an Nop-indexed inverse limit G =
lim←−Gn along surjective morphisms Gn−1 ↞ Gn of compact Lie groups Gn. For any com-

pactly metrizable group K, we denote by Map
U−1

K

CAlg(PrL)
(SK,∗, C) the subspace of the mapping

space MapCAlg(PrL)(SK,∗, C) containing those functors sending all representation spheres to ⊗-
invertible objects. We denote by pic(C) ⊆ π0(C≃) the subset of the set of equivalence classes of
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objects of C consisting of ⊗-invertible objects. Here C≃ := MapCat∞(∗, C) is the core of C. When
s(UK) denotes the poset of finite dimensional subrepresentations of a complete K-universe UK ,
then the diagram

Map
U−1

K

CAlg(PrL)
(SK,∗, C)

∏
V ∈s(UK) pic(C)

MapCAlg(PrL)(SK,∗, C)
∏

V ∈s(UK) π0 C≃

ev(SV )

ev(SV )

is a pullback square. Following Construction 2.5.16, we may write the poset s(UG) as nested
union of the posets s(UGn

). We conclude that the two right diagonal arrows in the following
commutative diagram

lim←−n
Map

U−1
Gn

CAlg(PrL)
(SGn,∗, C) lim←−n

∏
V ∈s(UGn ) pic(C)

Map
U−1

G

CAlg(PrL)
(SG,∗, C)

∏
V ∈s(UG) pic(C)

MapCAlg(PrL)(SG,∗, C)
∏

V ∈s(UG) π0(C≃)

lim←−n
MapCAlg(PrL)(SGn,∗, C) lim←−

∏
V ∈s(UGn ) π0 C≃

≃

≃ ≃

are equivalences. Since the inflations exhibit SG,∗ as the colimit colimL
n SGn,∗ in CAlg(PrL), the

lower left diagonal arrow in the above diagram is an equivalence, as well. Because pullbacks are
closed under limits, the large square in the above diagram is a pullback square. We conclude
that the lower horizontal morphism in the following commutative square

MapCAlg(PrL)(SpG, C) lim←−n
MapCAlg(PrL)(SpGn,∗, C)

Map
U−1

G

CAlg(PrL)
(SG,∗, C) lim←−n

Map
U−1

Gn

CAlg(PrL)
(SGn,∗, C)

(Σ∞)∗ (Σ∞)∗

≃

is an equivalence. The right vertical map in this square is an equivalence by the compact Lie
group version of this Proposition 2.6.10, see [GM23, Corollary C.7.]. The top horizontal map is

an equivalence because the inflations exhibit SpG as the colimit colimL
n SpGn

in CAlg(PrL). We
conclude that the left vertical map, i.e. precomposition by the suspension functor Σ∞ : SG,∗ →
SpG, defines an equivalence

(Σ∞)
∗
: MapCAlg(PrL)(SG, C)

≃−−→ Map
U−1

G

CAlg(PrL)
(SG,∗, C),

as well. □

Notation 2.6.11. For a compactly metrizable group G, we denote by s(UG) the poset of finite
dimensional subrepresentations of a complete G-universe as in Definition 2.5.15. For V ∈ s(UG)
we write S−V ∈ SpG for the dual (⊗-inverse) of the representation sphere SV := Σ∞SV of V .
We abbreviate

Σ∞±V := S±V ⊗ Σ∞(−) : SG,∗ → SpG .
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Proposition 2.6.12. The functors Σ∞−V : SG,∗ → SpG exhibit SpG as the colimit of a functor

F : s(UG)→ PrL, V 7→ SG,∗

with transition maps SU ∧ (−) : SG,∗ −→ SG,∗ for W ⊆ V ⊆ UG and V = U ⊕W .

Proof. Analogously to [GM23, Appendix C.1] we define the required functor

F : s(UG)→ PrL,

working with the relative category description for SG,∗ from Proposition 2.4.19. Then, the same
arguments as in [GM23, Lemma C.5., Proposition C.6, Corollary C.7] imply the existence of a
presentably symmetric monoidal structure of the component inclusion

SG,∗ → colimF =: SG,∗[(S
V )−1 : V ∈ s(UG)]

at the zero representation 0 ∈ s(UG), which satisfies the same universal property as the suspension
functor

Σ∞ : SG,∗ → SpG
satisfies by Proposition 2.6.10. □

For a compactly metrizable group G, the diagram F in Proposition 2.6.12 factors through the
subcategory PrL,ω ⊆ PrL spanned by presentable compactly generated categories and left adjoint
compact object preserving functors. It follows from [Lur09, Proposition 5.5.7.6.] and the remark

in [Lur09, Notation 5.5.7.7.] that PrL,ω → PrL preserves filtered colimits. By [Lur09, Proposition
5.5.7.8.] and [Lur17, Lemma 7.3.5.10.], taking compact object defines a filtered colimit preserving

functor (−)ω : PrL,ω → Cat∞ to the category of small categories. We conclude the following:

Corollary 2.6.13. The functors Σ∞−V : SωG,∗ → SpωG exhibit the category of compact G-spectra
SpωG as the colimit of the following functor

Fω : s(UG)→ Cat∞, V 7→ SωG,∗

to the category of small ∞-categories. For an inclusion W ⊆ V ⊆ UG the diagram Fω has the
transition map SU ∧ (−) : SωG,∗ → SωG,∗ for V = U ⊕W .

Corollary 2.6.14. Let G be a compactly-metrizable group. For any two compact pointed G-
spaces X,Y ∈ SωG,∗ the functors Σ∞−V induce an equivalence

colim
V ∈s(UG)

MapSG,∗
(SV ∧X,SV ∧ Y )

≃−−→ MapSpG
(Σ∞X,Σ∞Y ) (32)

on mapping spaces. The same holds for not necessarily compact Y ∈ SG,∗.

Proof. The statement follows from Corollary 2.6.13 by the mapping space formula for filtered
colimits of small ∞-categories, see [BBB24, Lemma 2.3.]. The second statement follows because
both sides of the equation are stable under filtered colimits in Y . □

Corollary 2.6.15. Let G be a compactly-metrizable group. Let SporthG denote the underlying
∞-category of Fausk’s model [Fau08] for G-spectra with respect to the family Lie(G). Let

Σ∞,orth :
(
TopG,∗

)Lie(G),◦ → SporthG

denote the functor of∞-categories obtained from the left Quillen suspension∞-functor of [Fau08].

There exists a unique symmetric monoidal left adjoint functor SpG → SporthG making the diagram

SpG SporthG

SG,∗
(
TopG,∗

)Lie(G),◦

Σ∞

(2.4.19)

≃

Σ∞,orth
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commute. This functor SpG → SporthG is an equivalence of ∞-categories.

In the case that G is a profinite group, this Corollary 2.6.15 is due to [BBB24].

Proof. Existence and uniqueness of the functor SpG → SporthG follow from Proposition 2.6.10. By

our Corollary 2.6.14 and Fausk’s [Fau08, Corollary 7.2.], the functor SpG → SporthG is fully-faithful

on suspension spectra of compact pointed G-spaces. Because SpG is stable and SpG → SporthG

preserves finite limits and colimits, the functor SpG → SporthG is consequently fully-faithful,
on all finite colimits of suspension spectra. By Fausk’s [Fau08, Theorem 4.4.], the category

SporthG is generated, in the sense of stable categories, by the suspension spectra of the orbits

{G/U+}U∈Lie(G). Moreover, these are compact objects in SporthG . The analog statement also

holds for the category SpG of G-spectra by Proposition 2.6.5. We conclude, that SpG → SporthG

induces an equivalence on compact objects, and the result follows by taking Ind-categories. □

Proposition 2.6.16. Let G be a compactly metrizable group and H ≤ G a subgroup with H ∈
Lie(G). Then, the functor ResGH : SpG → SpH admits a left adjoint IndGH : SpH → SpG. The
Beck-Chevalley transformation of the natural equivalence

Σ∞ ◦ ResGH ⇒ ResGH ◦Σ∞

defines an equivalence

IndGH ◦Σ∞ ≃
==⇒ Σ∞ ◦ IndGH (33)

of functors SH,∗ → SpG.

Proof. By Corollary 2.6.13, the functors Σ∞−V : SωG,∗ → SpωG exhibit SpωG as colimit over the

poset s(UG) in Cat∞ . By Corollary 2.5.17, ResGH(UG) is a complete H-universe. So, again, by
Corollary 2.6.13, the functors

Σ∞−ResGH(V ) : SωH,∗ → SpωH
exhibit SpωH as the colimit over the poset s(UG) in Cat∞. By the second part of [GM23, Theorem

C.6.], the restriction functor ResGH : SpωG → SpωH is the morphism induced on colimits by a natural
transformation Stab(Res) of functors s(UG) → Cat∞. This natural transformation Stab(Res)

evaluates at each G-representation V ⊆ UG the restriction functor ResGH : SωG,∗ → SωH,∗ between
pointed G- and H-spaces.

We claim that the Beck-Chevalley transformation of the natural equivalence ResGH(SV )∧(−)⇒
ResGH(SV ∧ (−)) defines an equivalence

IndGH(ResGH(SV ) ∧ (−)) =⇒ SV ∧ IndGH(−)
for all V ⊆ UG. By Proposition 2.4.19, we may check the Beck-Chevalley condition on cofibrant

objects in the model (TopG)
Lie(G),◦

. Here, we obtain the homeomorphism, which in the literature
is often referred to as shearing isomorphism, see [Sch18, page 262].

Because this Beck-Chevalley condition holds, we may employ [Lur17, Proposition 7.3.2.11],

to obtain a natural transformation6 Stab(IndGH) of functors s(UG) → Cat∞ together with the

following structure: The natural transformations Stab(IndGH) and Stab(ResGH) unstraighten to
relative adjoint morphisms of coCartesian fibrations over s(UG), in the sense of [Lur17, Propo-
sition 7.3.2.1]. Moreover, the relative adjunction restricts on each V ∈ s(UG) to the induction

IndGH : SωH,∗ → SωG,∗ and restriction ResGH : SpωG,∗ → SpωH,∗ adjunction.

Dwyer-Kan localization is a (∞, 2)-functor by [Lur17, Proposition 4.1.7.2.], so, if we localize
the coCartesian unstraightenings at coCartesian edges, to compute the colimits SpωH and SpωG in

6We additionally use that a relative left adjoint preserve coCartesian edges by the opposite of [Lur17, Propo-

sition 7.3.2.6.], and therefore straightens to the natural transformations Stab(IndGH).
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Cat∞, the relative adjunction between the coCartesian unstraigthenings is sent to an adjunction.
Therefore, the natural transformation Stab(IndGH) induces a morphism on colimits, denoted

IndGH : SpωH → SpωG, which is left adjoint to ResGH : SpωG → SpωH . Passing to Ind(−)-categories,
we obtain a functor IndGH : SpH → SpG, which is left adjoint to ResGH : SpH → SpG. Indeed,
taking Ind(−)-categories is an (∞, 2)-functor by the proof of [BB24, Proposition 2.4.3.] and, in
particular, preserves adjunctions.

To see whether the Beck-Chevalley transformation in Equation (33) is an equivalence, we can
check on compact objects. We restrict the triangle identity of the above relative adjunction to
the fiber over 0 ∈ s(UG) and localize at the coCartesian edges to obtain the result. □

Remark 2.6.17 (Homotopy Groups). It follows that for H ≤ G a subgroup of a compactly
metrizable group with H ∈ Lie(G) the categorical H-fixed point functor (−)H : SpG → Sp is

corepresented by Σ∞
+ (G/H) ≃ IndGH(S). The homotopy group functors

{πH
∗ (−)}H∈Lie(G) for πH

∗ (−) := π∗((−)H) : SpG → Abgr

to graded abelian groups are jointly conservative by Proposition 2.6.5.

Corollary 2.6.18. Suppose surjective morphisms φn : G ↠ Gn exhibit a topological group G as
an Nop-indexed limit G ∼= lim←−Gn with each Gn a compact Lie group. For n ≥ 0 and H ≤ G a

subgroup with H ∈ Lie(G), the inflations {InflGGm
(−)}m≥n induce an equivalence of lax symmetric

monoidal functors SpGn
→ Sp,

colim
m≥n

(
InflGm

Gn
(−)
)Hm

→
(
InflGGn

(−)
)H

,

where Hm := φm(H) ≤ Gm is a closed subgroup of Gm. By applying the homotopy group functor
π∗ : Sp→ Abgr, we obtain a preferred (graded ring) isomorphism

colim
m≥n

πHm
∗

(
InflGm

Gn
(E)
)
→ πH

∗

(
InflGGn

(E)
)

naturally in the (homotopy ring) Gn-spectrum E ∈ SpGn
.

Proof. The fixed point functor is co-represented by G/H ∈ OrbG. We assumed that H ∈ Lie(G),

so we may choose an m ≥ n such that the canonical map G/H → InflGGm
(Gm/Hm) is an

equivalence. The result follows from Lemma 2.6.2. □

Lemma 2.6.19. Let G be a compactly metrizable group and H ≤ G a subgroup with H ∈
Lie(G). Let φn : G → Gn be a surjective continuous group homomorphism and set Hn :=
φn(H) ≤ Gn. If ker(φn) ≤ H, then, the Beck-Chevalley transformation of the natural equiva-
lence

InflGHn
◦ResGn

Hn

≃
==⇒ ResGH ◦ Infl

G
Gn

is an equivalence

IndGH ◦ Infl
H
Hn

≃
==⇒ InflGGn

◦ IndGn

Hn

of functors SpHn
→ SpG.

Proof. The above functors preserve colimits and SpHn
is generated under colimits and shifts

by suspension spectra, see Proposition 2.6.5. Thus, it suffices to check that the Beck-Chevalley
transformation evaluates to an equivalence on suspension spectra. Via Proposition 2.6.16, it is
sufficient to prove the analogue statement for the same-named functors on the space level. This
we have already done in Lemma 2.3.9. □



FORMAL GROUP LAWS AND STABLE HOMOTOPY THEORY OVER PROFINITE ABELIAN GROUPS 29

2.6.2. Geometric Fixed Points.

Definition 2.6.20. Let G be a compactly metrizable group and H ≤ G a closed subgroup. By
Proposition 2.6.10 there exists a unique symmetric monoidal left adjoint functor ΦH

G : SpG → Sp

such that ΦH
G ◦Σ∞ ≃ Σ∞ ◦ (−)H . This geometric fixed point functor factors as ΦH

G ≃ ΦH ◦ResGH ,
where ΦH : SpH → Sp is the absolute geometric fixed point functor.

Observation 2.6.21. Let φ : G→ Gn be a surjective continuous homomorphism of compactly
metrizable groups. Let H ≤ G be a closed subgroup and Hn := φ(H) its image. Then we obtain
a preferred equivalence

ΦH
G ◦ Infl

G
Gn
≃ ΦHn

Gn
(34)

of symmetric monoidal functors SpGn
→ Sp.

Indeed, the equivalence (InflGGn
(−))H ≃ (−)Hn of functors SGn,∗ → S∗ from (the based

version) of Corollary 2.6.18, provides a preferred symmetric monoidal equivalence

ΦH
G ◦ Infl

G
Gn
◦Σ∞ ≃ Σ∞ ◦ (−)H ◦ InflGGn

≃ Σ∞ ◦ (−)Hn ≃ ΦHn

Gn
◦ Σ∞

of functors SGn,∗ → Sp. By the universal property of Gn-spectra, see Proposition 2.6.10, there

exists a unique equivalence of symmetric monoidal functors ΦH
G ◦Infl

G
Gn
≃ ΦHn

Gn
lifting the previous

equivalence along precomposition with Σ∞ : SGn,∗ → SpGn
.

Remark 2.6.22. Suppose morphisms φn : G → Gn exhibit a topological group G as inverse
limit G ∼= lim←−Gn along surjective morphisms Gn−1 ↞ Gn of compact Lie groups Gn. Then,

the relation in Equation (34) uniquely determines the geometric fixed point functor ΦH
G for any

closed subgroup H ≤ G. In fact, we obtain an equivalence of symmetric monoidal functors

colimL

n∈N
ΦHn

Gn
≃ ΦH

G : colimL

n∈N
SpGn

≃ SpG −→ Sp,

where the colimit along inflations is computed in CAlg(PrL).

Lemma 2.6.23. Let G be a compactly metrizable group and X,Y ∈ SωG,∗ pointed compact

G-spaces. The inclusion s(UG
G ) → s(UG) of the subposet spanned by G-fixed representations

admits a right adjoint V 7→ V G and the diagram

MapSpG
(Σ∞Y,Σ∞X) MapSp(Σ

∞Y G,Σ∞XG)

colim
V ∈s(UG)

MapSG,∗
(SV ∧ Y, SV ∧X) colim

V ∈s(UG
G )

MapS∗
(SV G ∧ Y G, SV G ∧XG)

colim
V ∈s(UG)

MapS∗
(SV G ∧ Y G, SV G ∧XG)

ΦG

(Σ∞−V )V

(−)G

(Σ∞−V G
)V

≃

commutes, where both upper vertical arrows are equivalences. Moreover, this Lemma also holds
for non-compact X ∈ SG,∗.

Proof. It is explained in [GM23, Theorem C.6.] how the universal property of inverting represen-
tation spheres applies in practice. This applies in our situation by Proposition 2.6.10. Unraveling
our construction of the geometric fixed point functor, the above square commutes by the second
part of [GM23, Theorem C.6.], at least for compact X ∈ SωG,∗. Passing to filtered colimits, the
general case follows. The vertical arrows in the diagram are equivalences by Corollary 2.6.14. □
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2.6.3. A Convenient Model for Geometric Fixed Points. For this Section 2.6.3, we fix a com-
pactly metrizable group G. Recall from Example 2.4.2 that PG ⊆ Lie(G) denotes the family
of subgroups H ∈ Lie(G) with H ̸= G. We discussed the classifying space E PG ∈ SG of this

family in Section 2.4. Moreover, we defined the pointed G-space Ẽ PG as the cofiber of the
G-map (E PG)+ → S0.

Since ΦG(Σ∞
+ E PG) ≃ ∗, the map S→ Ẽ PG := Σ∞Ẽ PG induces an equivalence

ΦG(X)
≃−−→ ΦG(Ẽ PG ⊗X)

on geometric fixed points for any G-spectrum X.

Proposition 2.6.24. Let G be a compactly metrizable group. Then, the geometric fixed point
functor induces an equivalence

ΦG : mapSpG
(Y, Ẽ PG ⊗X)→ mapSp(Φ

G(Y ),ΦG(Ẽ PG ⊗X)) ≃ mapSp(Φ
G(Y ),ΦG(X)) (35)

on mapping spectra, for any two G-spectra X and Y . The equivalence

ΦG(Ẽ PG ⊗ InflG1 (X))
≃
==⇒ X

serves as a counit for and adjunction ΦG ⊣ Ẽ PG ⊗ Infl1(−).

Proof. By Example 2.4.15, taking fixed points induces an equivalence of mapping spaces

(−)G : MapSG,∗
(SV ∧ Y, SV ∧ (Ẽ PG ∧X))→ MapS∗

(SV G

∧ Y G, SV G

∧ (Ẽ PG ∧X)G)

for any pair X,Y ∈ SG,∗ of pointed G-spaces. When Y is compact, we may apply Lemma 2.6.23
to conclude that

ΦG : MapSpG
(Σ∞Y,Σ∞(Ẽ PG ∧X))→ MapSp(Σ

∞Y G,Σ∞(Ẽ PG ∧X)G)

is an equivalence of spaces. By suspending X, we conclude that the same holds on mapping
spectra, i.e. the map

ΦG : mapSpG
(Σ∞Y, Ẽ PG ⊗ Σ∞X)→ mapSp(Φ

G(Σ∞Y ),ΦG(Σ∞(Ẽ PG ∧X))

is an equivalence for any compact pointed G-space Y and an arbitrary pointed G-space X. By
Proposition 2.6.5 the category of G-spectra is generated under colimits and shifts by suspension
G-spectra. The above map preserves colimits in the variable X, by compactness of Y . So, the
map in Equation (35) is an equivalence, whenever Y is the suspension spectrum of a compact
pointed space, and X is an arbitrary G-spectrum. Finally, me can fix X and pass to colimits in
Y , to see that the map in Equation (35) is an equivalence for any two G-spectra X and Y .

By the universal property ofG-spectra, see Proposition 2.6.10, the symmetric monoidal functor
ΦG ◦ InflG1 canonically identifies with the identity functor of spectra. □

The equivalence in Equation (35), specializes to an equivalence

(Ẽ PG ⊗−)G → ΦG(−) (36)

of symmetric monoidal functors SpG → Sp, when we set Y = InflG1 (S).

Definition 2.6.25. For each compactly metrizable group G, we write U⊥
G for the orthogonal

complement of the G-fixed-points (UG)G in a complete G-universe G. For each finite dimensional
orthogonal G-representation V , we write S(V ) ∈ SG for the Lie(G)-cofibrant G-space consisting
of unit length vectors in V .
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Note that any representation sphere SV ∈ SG,∗ identifies with cofiber of the based G-map
(S(V )→ ∗)+.

By [Sch18, Example 3.3.7.], for each n ≥ 0, the unique Gn-map

colim
V⊆U⊥

Gn

S(V )→ E PGn (37)

is an equivalence. We conclude from Equation (22) and Construction 2.5.16, that the unique
G-map

colim
V⊆U⊥

G

S(V )→ E PG (38)

is an equivalence as well. Applying cofib((−)+ → ∗+) to Equation (38) induces an equivalence

colim
V⊆U⊥

G

SV → Ẽ PG (39)

under S0 ∈ SG,∗.

Remark 2.6.26. The previous discussion also works for a complex complete G-universe. Indeed,
[Sch18, Example 3.3.7.] goes through in that setting.

Corollary 2.6.27. The symmetric monoidal functor Ẽ PG ⊗ (−) : SpG → SpG is equivalent to
the functor

E 7→ colim
V⊆U⊥

G

SV ⊗ E

and the lax monoidal transformation EG → ΦG(E) is equivalent to EG → colim
V⊆U⊥

G

(SV ⊗ E)G.

2.7. Pro Global Homotopy Theory.

2.7.1. Unstable Pro Global Homotopy Theory. Henriques and Gepner [HG07] defined the ∞-
category Sgl of global spaces as presheaf ∞-category on the global orbit category Glo. The
objects of the global orbit category Glo are the global classifying spaces BglG of compact Lie
groups G. [LNP25, Proposition 6.3.] describes a functor out of the (homotopy coherent nerve of
the topological) category of compact Lie groups

Bgl(−) : CptLie→ Glo, G 7→ BglG ,

which exhibits the set of homotopy classes of maps [BglG,BglL]gl as the set of conjugacy classes
of continuous group homomorphisms G→ L.

For every compact Lie group G, there is a global homotopy orbit functor (−)//G : SG → Sgl
sending an orbit G/H ∈ OrbG to the (Yoneda image of the) global classifying space BglH. The
G-restriction functor ResG : Sgl → SG is defined as the right adjoint of the global homotopy
orbit functor. It sends a global classifying space BglL ∈ Glo to the classifying space BG(L) ∈ SG
of G-equivariant L-principle bundles.

Construction 2.7.1. Let G be a compactly metrizable group. We construct a G-restriction
functor ResG : Sgl → SG, which sends the global classifying space BglL ∈ Glo of a compact Lie
group L to the classifying space BG(L) ∈ SG of G-equivariant L-principle bundles. Inspired by
the description of BG(L) as colimit along inflations, see Equation (27), we want to define

ResG : Sgl → SG, X 7→ colim
n∈N

InflGGn
(ResGn

(X )) ,

where we chose an isomorphism from the topological group G to an Nop-indexed inverse limit
lim←−n

Gn along surjective morphisms Gn−1 ↞ Gn of compact Lie groups Gn.
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We construct the desired functor as the composite of the following four functors: Recall from
[LNP25, Theorem 6.17.] that the G-restriction functors exhibit the category of global spaces as
a partially lax limit

Sgl → laxlim†
BglG∈Gloop

SG, X 7→ {ResG X}BglG

with respect to the marking of the global orbit category Glo by injective group homomorphisms.
Employing the functoriality of lax limits in the indexing category, we obtain our second functor

laxlim†
BglG∈Gloop

SG → laxlim
n∈N

SGn
, {XG}BglG

7→ {XGn
}n

by restricting the partially lax limit along the opposite of the functor

Nop → Glo, n 7→ BglGn.

We recall that the inflations exhibit SG as the colimit of n 7→ SGn in the ∞-category PrL. In
particular, we obtain a natural transformation (valued in the ∞-category of large ∞-categories)
from the functor n 7→ SGn

to the constant functor at SG. Employing the functoriality of lax
limits in natural transformations, we obtain our third functor

laxlim
n∈N

SGn
→ laxlim

n∈N
const(SG), (Xn)n 7→ (InflGGn

(Xn))n.

Further, recall the equivalence of ∞-categories

laxlim
n∈N

const(SG) ≃ Fun(N,SG)

from [Ber20]. Postcomposing the previous three functors with the colimit functor

colimn : Fun(N,SG)→ SG
yields the desired functor

ResG : Sgl → SG, X 7→ colimn Infl
G
Gn

(ResGn
X ) .

Remark 2.7.2. Consider two different isomorphisms G ∼= lim←−n
Gn and G ∼= lim←−m

G′
m of topolog-

ical groups with Gn, Gm compact Lie groups. Utilizing each of these isomorphisms in Construc-
tion 2.7.1 yields a priori different G-restriction functors Sgl → SG. Via a cofinality argument,
one may produce a preferred natural equivalence between these. We refrain from discussing the
higher coherence of this identification.

Observation 2.7.3. The restriction functor ResG : Sgl → SG of Construction 2.7.1 preserves
finite limits and all small colimits.

Proposition 2.7.4. Suppose surjective morphisms G ↠ Gn exhibit a topological group G as an
Nop-indexed limit with each Gn a compact Lie group. Let n ∈ N and consider a compact genuine
Gn-space Y ∈ SωGn

. Then, the inflations induce an equivalence

colim
k≥n

MapSGk
(InflGk

Gn
(Y ),ResGk

X )→ MapSG
(InflGGn

(Y ),ResG X ),

naturally in the global space X ∈ Sgl.

Proof. We employ compactness of Y and the definition of ResG(−) as a colimit:

MapSG
(InflGGn

(Y ),ResG X ) ≃ colim
k≥n

MapSG
(InflGGn

(Y ), InflGGk
(ResGk

X ))

≃ colim
k≥n

MapSG
(InflGGk

(InflGk

Gn
(Y )), InflGGk

(ResGk
X ))

≃ colim
k≥n

MapSGk
(InflGGk

(Y ),ResGk
X ),
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where in the last step we used that the inflation functor InflGGk
: SGk

→ SG is fully faithful by
Construction 2.3.5. □

Corollary 2.7.5. Suppose surjective morphisms φn : G ↠ Gn exhibit a topological group G as
an Nop-indexed limit G ∼= lim←−Gn with each Gn a compact Lie group. For a subgroup H ≤ G

with H ∈ Lie(G), we construct a preferred equivalence of spaces

colim
k∈N

(ResGk
X )Hk

≃−−→ (ResG X )H

naturally in X ∈ Sgl, where Hk := φk(H) ≤ Gk

Proof. The fixed point functor is co-represented by the orbit G/H ∈ SG. We assumed that

H ∈ Lie(G), so we may choose an n ∈ N such that the canonical map G/H → InflGGn
(Gn/Hn) is

an equivalence. The result follows from Proposition 2.7.4 applied to Y = Gn/Hn. □

Remark 2.7.6 (Global Classifying Space of Compactly Metrizable Groups). Suppose surjective
morphisms G ↠ Gn exhibit a topological group G as an Nop-indexed limit with each Gn a
compact Lie group. The pro-extension of ResG : Sgl → SG

ResG : Pro(Sgl)→ SG (40)

has a left adjoint

(−)//G : SG → Pro(Sgl). (41)

by the dual of [Lur09, Proposition 5.3.5.13.]. For H ≤ G with H ∈ Lie(G), we obtain an
equivalence

MapPro(Sgl)

(
(G/H)//G, X

)
≃ MapSG

(G/H,ResG X )
2.7.5≃ colimn MapSGn

(Gn/Hn,ResGn
X )

≃ colimn MapSgl
(BglHn,X ) ≃ MapPro(Sgl)

(
lim←−
n

BglHn,X

)
naturally in X ∈ Sgl. Here, Hn := φn(H) ≤ Gn is the image of H under the projection
φn : G→ Gn.

By the Yoneda Lemma, we obtain preferred equivalences

(G/H)//G ≃ lim←−
n

BglHn, and (∗)//G ≃ lim←−
n

BglGn (42)

in Pro(Sgl). These inverse limits are not computed in the category of global spaces. As the global
homotopy orbit functor (−)//G : SG → Pro(Sgl) preserves small colimits, it is uniquely determined
by its restriction to the full subcategory of SG spanned by orbits of subgroups H ∈ Lie(G).

The following Proposition is inspired by the special case of X = BglL, which we saw in
Section 2.5.2.

Proposition 2.7.7. Suppose surjective morphisms G ↠ Gn exhibit a topological group G as
an Nop-indexed limit with each Gn a compact Lie group. Let X ∈ Sgl be a global space. We
abbreviate by XGn

:= ResGn
(X ) and XG := ResG(X ) the restrictions of X in the sense of

Construction 2.7.1. The functors

(SGn)/XGn

InflG
Gn−−−−→ (SG)/ InflG

Gn
(XGn ) → (SG)/XG

,

exhibit (SG)/XG
as the colimit

colimL
n

(
(SGn)/XGn

)
≃−−→ (SG)/XG

in the ∞-category PrL of presentable ∞-categories and left adjoint functors.
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Proof. Taking compact objects (−)ω is the inverse of Ind-completion Ind(−) : Catrex,#∞ → PrL,ω,

see [Lur09, 5.5.7.8.]. Because Catrex,#∞ → Cat∞ preserves filtered colimits, we are reduced to
showing that the inflations exhibit (SωG)/XG

as the colimit of
(
SωGn

)
/XGn

in Cat∞. Recall that

objects of filtered colimits in Cat∞ are computed on underlying sets, see [BBB24, Section 2].

Because the map colimn Infl
G
Gn
XGn

→ XG is an equivalence, the essential surjectivity of the
functor

colimn

((
SωGn

)
/XGn

)
−→ (SωG)/XG

follows from Equation (10). We will finish the proof by showing that this functor is fully-faithful:
For this purpose we fix two objets X,Y ∈

(
SωGn

)
/XGn

for some n ∈ N. By the mapping space

formula for filtered colimits in Cat∞, see [BBB24, Lemma 2.3.], the inflations present the mapping
space Map(X,Y ) between the image of X and Y in

colimn

((
SωGn

)
/XGn

)
as the colimit

colim
m≥n

Map/XGm
(InflGm

Gn
(X), InflGm

Gn
(Y ))

of the mapping spaces in the categories
(
SωGm

)
/XGm

. Recall the fiber product formula for mapping

spaces in any slice category:

MapC/x
(z

g−→ x, y
f−→ x) ≃ fibg

(
MapC(z, y)

f∗−→ MapC(z, x)
)

Because filtered colimits commute with finite limits in spaces, we may write the mapping
space Map(X,Y ) as the fiber of the map

colim
m≥n

MapSGm
(InflGm

Gn
(X), InflGm

Gn
(Y ))→ colim

m≥n
MapSGm

(InflGm

Gn
(X),XGm)

Because inflation is fully faithful, see Construction 2.3.5, the latter map of colimits identifies via
the equivalence in Proposition 2.7.4 with the post-composition map

MapSG
(InflGGn

(X), InflGGn
(Y ))→ MapSG

(InflGGn
(X),XG)

along InflGGn
(Y )→ XG. By another application of the mapping space formula in slice categories,

the fiber of the map under inspection computes the mapping space of the images of X and Y in
the slice category (SG)/XG

. As this equivalence of mapping spaces was induced by the inflation

InflGGn
(−), the functor under inspection is fully faithful. □

2.7.2. Stable Pro Global Homotopy Theory.

Construction 2.7.8. Using the lax limit description of global spectra Spgl from [LNP25, The-
orem 11.10.], we mimic Construction 2.7.1 to define a symmetric monoidal functor

ResG : Spgl → SpG, X 7→ colim
n∈N

InflGGn
ResGn

(X ),

whenever surjective morphisms G ↠ Gn exhibit a topological group G as an Nop-indexed inverse
limit G ∼= lim←−Gn of compact Lie groups Gn. Here the arguments of Construction 2.7.1 go
through verbatim in the stable setting, where only the symmetric monoidal structure wasn’t
discussed. Note that the canonical oplax symmetric monoidal structure of the colimit functor
Fun(N,SpG)→ SpG is strongly monoidal because N is sifted. Because [LNP25, Theorem 11.10]
exhibits global spectra as partially lax limit in the (∞, 2)-category of symmetric monoidal ∞-
categories, our construction defines the functor ResG as a composite of canonically symmetric
monoidal functors.
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As in the unstable setting, the restriction functor ResG : Spgl → SpG of Construction 2.7.8
preserves small colimits.

Proposition 2.7.9. Suppose surjective morphisms G ↠ Gn exhibit a topological group G as an
Nop-indexed limit with each Gn a compact Lie group. Let n ∈ N and consider a compact genuine
Gn-spectrum Y ∈ SpωGn

. Then, the inflations induce an equivalence

colim
m≥n

mapSpGm
(InflGm

Gn
(Y ),ResGm

X )→ mapSpG
(InflGGn

(Y ),ResG X ),

of mapping spectra naturally in the global spectrum X ∈ Spgl.

Proof. We employ compactness of Y and the definition of ResG(−) as a colimit:

MapSpG
(InflGGn

(Y ),ResG X ) ≃ colim
k≥n

MapSpG
(InflGGn

(Y ), InflGGk
(ResGk

X ))

(2.6.2)
≃ colim

k≥n
colim
m≥k

MapSpGm
(InflGm

Gn
(Y ), InflGm

Gk
(ResGk

X )).

The result follows by cofinality. □

Corollary 2.7.10. Suppose surjective morphisms φn : G ↠ Gn exhibit a topological group G as
an Nop-indexed limit G ∼= lim←−Gn with each Gn a compact Lie group. For a subgroup H ≤ G

with H ∈ Lie(G), we construct a preferred equivalence of lax symmetric monoidal functors

colimn (ResGn
(−))Hn

≃−−→ (ResG(−))H : Spgl → Sp,

where Hn := φn(H) ≤ Gn. By applying the homotopy group functor π∗ : Sp→ Abgr, we obtain
a preferred (graded ring) isomorphism

colimn π
Hn
∗ (ResGn

X )→ πH
∗ (ResG(X )). (43)

naturally in the (homotopy ring) global spectrum X ∈ Spgl.

Proof. The fixed point functor is corepresented by the suspension Σ∞
+ (G/H) of the orbit G/H ∈

SG. By assumption H ∈ Lie(G), so that we may choose an n ∈ N such that the canonical map

G/H → InflGGn
(Gn/Hn) is an equivalence. The result follows from Proposition 2.7.9 applied to

the orbit Y = Σ∞
+ Gn/Hn ∈ SpωGn

. Note that the natural transformation in Proposition 2.7.9 is
lax symmetric monoidal in the variable X whenever Y is a co-commutative co-algebra object. □

2.8. Equivariant Thom Spectra.

2.8.1. Representability of Equivariant K-Theory.

Construction 2.8.1. Consider the monoid BOgl :=
⊔

d∈N Bgl(O(d)) ∈ CMon(Sgl) and its group

completion7 BOPgl ∈ CGrp(Sgl). For any compactly metrizable group G, the G-restriction
functor ResG : Sgl → SG preserves finite products and small colimits. In particular, the G-
restriction functor preserves group completions. Specializing to our example, the G-restriction
of a group completion BOgl → BOPgl is a group completion

BOG → BOPG := ResG(BOPgl)

of the monoid

BOG := ResG(BOgl) ≃
⊔
d∈N

BG(O(d)) ∈ CMon(SG).

7In our convention a bold B stands for the group completed version.
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Let X be a Lie(G)-cofibrant G-space. By Proposition 2.5.12, pullback along the universal G-
equivariant vector bundles γd := EGO(d)×O(d) Rd defines a monoid isomorphism

[X,BOG]
G → vect0G(X) (44)

between the set of G-equivariant homotopy classes of maps and the set isomorphism classes of
G-equivariant vector bundles over X. We define KO0

G(X) as the Grothendieck group of the
monoid vect0G(X). By its universal property, we extend the above monoid isomorphism to a
homomorphism

KO0
G(X)→ [X,BOPG]

G

to the group of G-equivariant homotopy classes of maps X → BOPG.

Theorem 2.8.2. For every compactly metrizable group G and every compact Lie(G)-cofibrant
topological G-space X, the group homomorphism from Construction 2.8.1

KO0
G(X)→ [X,BOPG]

G

is an isomorphism from the Grothendieck group of isomorphism classes of G-equivariant vector
bundles on X to the monoid of G-equivariant homotopy classes of maps X → BOPG.

Proof. In the case that G is a compact Lie group, this is a result of Schwede’s, see [Sch18,
Theorem 2.4.10.]. We choose surjective morphisms G→ Gn exhibiting the topological group G
as Nop-indexed limit G ∼= lim←−n

Gn of compact Lie groups Gn. Because X is Lie(G)-cofibrant and

compact, the G action on X factors through some Gn, i.e. we may choose an object X̃ ∈ SωGn
so

that the inflated object InflGGn
(X̃) ∈ SωG represents the genuine G-space X. By Proposition 2.7.4,

the inflations induce a bijection

colim
m≥n

[
InflGm

Gn
(X̃),BOPGm

]Gm

→ [X,BOPG]
G
.

As we already know the result for compact Lie groups, we are reduced to checking that the group
homomorphism

colim
m≥n

KO0
Gm

(InflGm

Gn
(X̃))→ KO0

G(X)

is an isomorphism, as well. Because group completion is a left adjoint, it suffices to show that
the monoid map

colim
m≥n

vect0Gm
(InflGm

Gn
(X̃))→ vect0G(X)

is a bijection. By the representability result of Equation (44), it suffices to show that the inflations
induce a bijection

colim
m≥n

[
InflGm

Gn
(X̃),BOGm

]Gm

→ [X,BOG]
G
.

This follows from another application of Proposition 2.7.4. □

2.8.2. Equivariant Thom Spectra for Compact Lie Groups.

Remark 2.8.3. Let G be a compactly metrizable group. We believe that the most elegant
and conceptional construction of the G-equivariant complex bordism spectrum MUG is via
the equivariant symmetric monoidal Thom spectrum functor. Our construction of this Thom
spectrum functor will be based on forthcoming work by Emma Brink. In Equation (47) and
Corollary 2.9.18, we provide two descriptions ofMUG: a “global” description and a “telescoping”
description, respectively. Either of these can be taken as an ad hoc definition of the ring G-
spectrum MUG, and both are independent of the existence of a Thom spectrum functor—in
particular, they do not depend on Brink’s upcoming results.
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Furthermore, outside of this section on Equivariant Thom Spectra, we refer only to the
“global” or “telescoping” description of MUG, and make no use of the symmetric monoidal
Thom spectrum functor. Consequently, all of our results outside this section are independent of
Brink’s work, provided we establish that the “global” and “telescoping” descriptions of MUG

agree as homotopy ring G-spectra. We provide an alternative proof of this agreement—one that
does not rely on the Thom spectrum functor—in Remark 2.9.20.

Construction 2.8.4 (Brink). Upcoming work of Emma Brink will include the construction of
a functor

Th• : Gloop → Fun([1],CAlg(PrL))

together with the following two equivalences:

(1) An equivalence from the composite

Gloop
Th•−−→ Fun([1],CAlg(PrL))

target−−−−→ CAlg(PrL)

to the functor Sp• : Gloop → CAlg(PrL), BglG 7→ SpG from [LNP25].
(2) Recall that Orb is a wide subcategory of Glo with Orb/BglG = OrbG for all G ∈ CptLie.

Brink constructs an equivalence from the functor

Gloop
Th•−−→ Fun([1],PrL)

source−−−−→ PrL

to the composite functor

(S•)/BOPgl
: Gloop

(
Orb/−×Glo Glo/BOPgl

)op

−−−−−−−−−−−−−−−−−−→ Catop∞
Fun(−,S)−−−−−−→ PrL.

(3) Moreover, Brink shows that Elemendorf’s equivalence P(OrbG) ≃ SG induces a symmet-
ric monoidal equivalence from the source of the G-equivariant Thom spectrum functor

ThG := ThBglG : P
(
OrbG ×Glo Glo/BOPgl

)
→ SpG,

to the slice category

P
(
OrbG ×Glo Glo/BOPgl

) ≃−→ (SG)/BOPG
,

which carries the slice monoidal structure8 induced by the monoid structure of BOPG

and the cartesian monoidal structure on SG.
Remark 2.8.5. For α : G→ K a morphism of compact Lie groups, the functor

(Sα)/BOPgl
: (SK)/BOPK

→ (SG)/BOPG

sends (f : X → BOPK) to the composite

α∗(X)
α∗(f)−−−−→ α∗(BOPK)

Resα−−−→ BOPG,

where the map Resα is obtained by evaluating the lax natural transformation Res• : const(Sgl)⇒
S• from [LNP25, Theorem 6.7.] at the morphism α : G→ K. We conclude by the naturality of

Resα, that the map α∗(BOPK)
Resα−−−→ BOPG is the group completion of the canonical monoid

map α∗ BOK → BOG, which, in turn, is induced by the classifying maps of the G-restrictions
α∗γd of the universal K-equivariant vector bundles.

Theorem 2.8.6 (Brink). For any compact Lie-group G, the Thom spectrum functor

ThG : (SG)/BOPG
→ SpG

obtained by evaluating Th• : Gloop → Fun([1],CAlg(PrL)) at the global classifying space BglG
satisfies the following properties

8See [Lur17, Remark 2.2.2.5.] for a construction of the slice monoidal structure.
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• For any closed subgroup H ≤ G, the Beck-Chevalley transformation of the equivalence

ThH ◦ResGH ≃ ResGH ◦ThG is an equivalence IndGH ◦ThH
≃
==⇒ ThG ◦ IndGH .

• The composite

(SG)/BG(O(n)) → (SG)/BOPG

ThG(−)−−−−−→ SpG

factors as

(SG)/BG(O(n)) → SG,∗
Σ∞

−−→ SpG,

where the first functor is induced by the point-set model Thom space construction

(TopG)/Grn(UG) → TopG,∗, ξ 7→ Xξ,

which preserves colimits, as well as cofibrations and weak equivalences for the slice gen-
uine model structure.

2.8.3. Equivariant Thom Spectra for Compactly Metrizable Groups.

Construction 2.8.7. We Ind(−) extend the composite functor

CptLieop → Gloop
Th•−−→ Fun([1],CAlg(PrL))

to Pro(CptLie)op and restrict along the pro-analogue functor from Definition 2.2.2 to get the
Thom spectrum functor

Th• : Grp(CptMet)op → Fun([1],CAlg(PrL)).

Observation 2.8.8. The composite functor

Grp(CptMet)op
Th•−−→ Fun([1],CAlg(PrL))

target−−−−→ CAlg(PrL)

is equivalent to the functor Sp• : Grp(CptMet)op → CAlg(PrL) of Construction 2.2.3 via Ind
extending the equivalence from the Lie group case (1). The composite functor

Th• : Grp(CptMet)op
Th•−−→ Fun([1],CAlg(PrL))

source−−−−→ CAlg(PrL)

is equivalent to the functor

Grp(CptMet)op → CAlg(PrL), G 7→ (SG)/BOPG

via Proposition 2.7.7.

Definition 2.8.9. Let G be a compactly metrizable group. We define the G-equivariant Thom
spectrum functor

ThG : (SG)/BOPG
−→ SpG

as the evaluation of the Thom spectrum functor Th• from Construction 2.8.7 atG ∈ Grp(CptMet).

By its construction, the Thom spectrum functor is symmetric monoidal.

Remark 2.8.10. The functoriality of the Thom spectrum functor of Construction 2.8.7 encodes
a commutative square

(SK)/BOPK
SpK

(SG)/α∗ BOPK

(SG)/BOPG
SpG

ThK

α∗

α∗

ThG
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in CAlg(PrL) for any continuous homomorphism α : G → K of compactly metrizable groups,
where α∗ BOPK → BOPG is the group completion of the canonical monoid map α∗ BOK →
BOG, which, in turn, is induced by the classifying maps of the restrictions α∗γd of the universal
K-equivariant vector bundles.

We have seen in Example 2.5.22 that a G-equivariant vector bundle on a Lie(G)-cofibrant
G-space X is classified by a G-map to the Lie(G)-cofibrant G-space Grn(UG).

Theorem 2.8.11. For any compactly metrizable group G, the Thom spectrum functor

ThG : (SG)/BOPG
−→ SpG

satisfies the following properties:

(1) The G-equivariant Thom spectrum functor ThG preserves small colimits.
(2) For any subgroup H ≤ G with H ∈ Lie(G), the Beck-Chevalley transformation of the

natural equivalence ThH ◦ResGH ≃ ResGH ◦ThG is a natural equivalence

IndGH ◦ThH
≃
==⇒ ThG ◦ IndGH .

(3) For every n ∈ N, the composite

(SG)/BG(O(n)) → (SG)/BOPG

ThG(−)−−−−−→ SpG

factors as

(SG)/BG(O(n)) → SG,∗
Σ∞

−−→ SpG,

where the first functor is induced by the point-set model Thom space construction9

(TopG)/Grn(UG) → TopG,∗, ξ 7→ Xξ,

which preserves small colimits, as well as, cofibrations and weak equivalences, for the
slice Lie(G)-projective model structure.

Proof. The first statement is clear. For the second statement, we may reduce to the case of com-
pact objects, employing the preservation of small colimits. The result follows from the compact
Lie group case, see Theorem 2.8.6(i), via the compatibility (2.8.10) of equivariant Thom spectra
with inflations. Here, we may commute the relevant inflation and induction, by Lemma 2.6.19.
Concerning the third statement, we make the analogous point-set model construction of the
Thom space functor, as in the compact Lie group case of Theorem 2.8.6 (ii). The same proof
as in the compact Lie group case shows that the point-set Thom space construction preserves
colimits and weak equivalences. Because any generating Lie(G)-cofibration is inflated from a
compact Lie group, our point set Thom space construction preserves Lie(G)-cofibrations, since
this is true in the compact Lie group case. Now that we constructed all functors at hand, we
produce the required factorization from the compact Lie group case, by the passage to the colimit
along inflations, using Proposition 2.7.7. □

9For a G-equivariant vector bundle over a compact Lie(G)-cofibrant space, the point-set Thom space construc-
tion is given by the one-point compactification of the total space. In general, it is the (homotopy cofiber) of the
sphere bundle.
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2.9. Examples of Pro Compact Lie Spectra.

Construction 2.9.1 (Borel Spectra). For any compact Lie group G, the Borel construction is
right adjoint to the homotopy orbits functor (−)hG : SpG → Sp. Recall that the restriction to the
trivial group Spgl → Sp admits a right adjoint (−)b : Sp→ Spgl such that the Borel construction
factors as the composite

Sp
(−)b−−−→ Spgl

ResG−−−→ SpG .

If surjective morphisms G → Gn exhibit a topological group G as an Nop-indexed limit G ∼=
lim←−n

Gn of compact Lie groups G, we call the lax symmetric monoidal composite functor

(−)bG : Sp
(−)b−−−→ Spgl

ResG−−−→ SpG,

the Borel construction. The Borel construction (−)bG preserves finite colimits, but, admits no
adjoints, in general. For a (homotopy ring) spectrum R ∈ Sp, Equation (43) describes a (graded
ring) isomorphism

colimn R
−∗(BGn)→ πG

∗ (R
bG) (45)

Construction 2.9.2. Analogously to Construction 2.8.1, for any compactly metrizable group
G, we construct the grouplike monoid BUPG ∈ CMon(SG) by group completing the monoid
BUG :=

⊔
d∈N BG(U(d)) in G-spaces.

Construction 2.9.3 (Equivariant Complex K-Theory). For a compactly metrizable group G,
the G-equivariant periodic complex K-theory spectrum KUG ∈ CAlg(SpG) is defined as the
G-restriction of the periodic global complex K-theory spectrum KU ∈ CAlg(Spgl) of [Sch18,
Section 6.3.]. The equivalence BUPgl → Ω∞

gl KU in CMon(Sgl) induces an equivalence

BUPG → Ω∞KUG

in CMon(SG) on G-restrictions. By the unitary analog of Theorem 2.8.2, for any compact
Lie(G)-cofibrant topological G-space X, there is a preferred isomorphism from the unreduced
zeroth KU-cohomology group KU0

G(X+) to the Grothendieck group of isomorphism classes of
G-equivariant complex vector bundles on X: KU0

G(X+) ∼= (vectCG(X))grp.

Construction 2.9.4 (Symmetric Monoidal Thom Spectra). Let G be a compactly metrizable
group. Let ξ : X → BOPG be a morphism in the category CMon(SG) of commutative monoids
in G-spaces. We define the Thom spectrum of ξ by applying the symmetric monoidal Thom
spectrum functor ThG : (SG)/BOPG

→ SpG to ξ ∈ CAlg((SG)/BOPG
).

Here we use that the forgetful functor induces an equivalence CAlg((SG)/BOPG
) ≃ CMon(SG)/BOPG

.
Indeed this is clear from the construction of the slice monoidal structure on (SG)/BOPG

, see
[Lur17, Remark 2.2.2.5.].

In the following we focus on unitary groups, but the same arguments and definitions apply
verbatim for the family of orthogonal groups or symplectic groups.

Construction 2.9.5 (Equivariant Complex Bordism Spectrum). Let G be a compactly metriz-
able group.

• The Thom spectrum of the positive additive complex Grassmannian

BUγ
G ≃

⊕
d∈N

Σ∞ BG(U(d))γd ∈ CAlg(SpG)

is defined as the Thom spectrum of the composite

BUG → BOG → BOPG .
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This map BUG → BOPG factors uniquely through the group completion:

BUG → BUPG → BOPG .

The symmetric monoidal Thom spectrum of BUPG → BOPG is the periodic complex
bordism spectrum

MUPG ∈ CAlg(SpG).

• The complex dimension map

dim : BUPG → Z, ξ 7→ dim(ξ)

is defined as the group completion of the canonical morphism

BUγ
G :=

⊔
d∈N

BG(U(d))→ N

in CMon(SpG).
• The G-equivariant complex bordism spectrum MUG ∈ CAlg(SpG) is defined as the Thom
spectrum of the composite

BU0
G → BUPG → BOPG,

where BU0
G is defined as the fiber over 0 ∈ Z under the complex dimension map. The

dimension map induces an equivalence
⊔

d∈Z BU0
G → BUPG on underlying G-spaces,

from which we obtain a preferred equivalence⊕
d∈Z

MUG⊗S2d
≃−→MUPG (46)

of G-spectra.

Construction 2.9.6. Suppose morphisms G → Gn exhibit a topological group G as an Nop-
indexed inverse limit G ∼= lim←−n

Gn along surjective continuous homomorphism Gn−1 ↞ Gn

of compact Lie groups. We apply the G-equivariant Thom spectrum functor to the canonical
equivalence

colimn Infl
G
Gn

(BU0
Gn

)→ BU0
G

of commutative monoid objects, to obtain a preferred equivalence

colimn Infl
G
Gn

(MUGn
)→MUG (47)

in CAlg(SpG). The analogous constructions work for the spectra MUPG and BUγ
G. In partic-

ular, by (the proof of) Equation (43), the inflations induce a preferred graded ring isomorphism

colimn π
Gn
∗ (MUGn

)→ πG
∗ (MUG). (48)

Remark 2.9.7 (Global Structure of Thom spectra). The functoriality of the equivariant Thom

spectrum functor Th• : Gloop×[1] → CAlg(PrL) and the lax limit description of the categories
Sgl and Spgl allows us to write down a symmetric monoidal Thom spectrum functor

Thgl : (Sgl)/BOPgl
→ Spgl

that restricts to the G-equivariant Thom spectrum functor for any compact Lie group G. Mim-
icking the G-equivariant construction, we can define global bordism spectra10 such as

MUP := Thgl(BUPgl → BOPgl) ∈ CAlg(Spgl).

10Upcoming work of Schwede’s will identify the orthogonal spectrum model [Sch18, Example 6.1.53.] of the
global periodic complex bordism spectrum MUP ∈ CAlg(Spgl) with the above global Thom spectrum con-

struction. Independent of Schwede’s upcoming work, it follows from the argument in Remark 2.9.20 that the
G-restriction of Schwede’s global periodic bordism spectrum from [Sch18, Example 6.1.53.] agrees with our
construction of MUPG, as homotopy ring G-spectrum. The same applies for the (non-periodic) version MUG.
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Now, Construction 2.9.6 describes preferred equivalences

ResG(MUP)
≃−−→MUPG, ResG(MU)

≃−−→MUG and ResG(BU
γ
gl)

≃−−→ BUγ
G

in CAlg(SpG), for any compactly metrizable group G. Under this identification, Equation (48)
becomes an honest special case of our computation (43) of the homotopy groups of G-restricted
global spectra.

2.9.1. Telescoping Periodic Complex Bordism Spectrum.

Notation 2.9.8. Let G be a compactly metrizable group. For G-spaces X and Y , we abbreviate
the set of homotopy classes of G-maps by

[X,Y ]G := π0 MapSG
(X,Y ).

We use similar notation for maps of G-spectra and suppress the notation of Σ∞, when the context
is clear.

Notation 2.9.9 (RO(G)-grading). Let G be a compactly metrizable group, let H ≤ G be a
subgroup and let V : ∗ → BOPH represent a virtual H-representation V ∈ RO(H). Consistently
with Definition 2.6.9, we call SV := Th(V ) ∈ SpH the representation sphere of V . For any G-
spectrum X, we denote by

πH
V (X) := [SV ,ResGH(X)]H

the representation graded homotopy group of X.

Lemma 2.9.10. Let G be a compactly metrizable group. Let f : BUG → X be a morphism in
CMon(SG). The following are equivalent:

(a) The map f is invertible in the monoid [BUG, X]G.
(b) For any d ∈ N and any d-dimensional unitary G-representation V , the composite G-map

∗ V−→ BG(U(d))→ BUG
f−→ X

represents an invertible object of the monoid πG
0 (X) := [∗, X]G.

Proof. Because restriction defines a group homomorphism [BUG, X]G → [∗, X]G, a) implies b).
For the converse, assuming b), it suffices to prove that the shear map

χ(f) : BUG×X → BUG×X, (y, x) 7→ (y, f(y) + x)

is an equivalence of G-spaces. Recall that the fix point functors (−)H : SG → S, for H ≤ G
running through all H ∈ Lie(G) are jointly conservative.

We claim that fH factors through the inclusion (XH)× → XH of invertible components of
XH : Any map W ∈ πH

0 (BUG) represents a unitary H-representation W . We choose a H-linear

isometric embedding W ↪→ ResGH(V ) for a finite dimensional unitary G-representation V . By

assumption, f∗(V ) ∈ πG
0 (X) is invertible. Consequently, the restriction f∗(Res

G
H(V )) ∈ πH

0 (X)

is invertible, as well. Consider the orthogonal decomposition ResGH(V ) = W ⊕W⊥, as an unitary

H-representation. In πH
0 (BUG) we have ResGH(V ) = W +W⊥. Moreover, f is a monoid map,

so, the equation f∗(W ) + f∗(W
⊥) = f∗(Res

G
H(V )) holds in πH

0 (X). We conclude, that f∗(W )
and f∗(W

⊥) are both invertible in πH
0 (X).

This proves the claim because πH
0 (X) := π0(X

H). By construction, (XH)× is a grouplike

E∞-space. Thus, fH admits an inverse in [BUH
G , XH ]. This implies that the shear map

χ(fH) : BUH
G ×XH → BUH

G ×XH , (y, x) 7→ (y, fH(y) + x)

is an equivalence. But, the fixed point functor (−)H preserves products, so that χ(f)H ≃ χ(fH)
is an equivalence, as well. □



FORMAL GROUP LAWS AND STABLE HOMOTOPY THEORY OVER PROFINITE ABELIAN GROUPS 43

Definition 2.9.11. LetG be a compactly metrizable group and let V be a d-dimensional complex
G-representation. We may factor the classifying map of V as

∗ V−→ BG(U(d))→ BUG → BUPG .

Applying the Thom spectrum functor ThG : (SG)/BOPG
→ SpG yields maps of Thom spectra

SV ThG(V )−−−−−→ Σ∞ BG(U(d))γd
tUd−→ BUγ

G
i−→MUPG .

The composite of the first two G-maps represent the universal Thom class tU (V ) ∈ πG
V (BU

γ
G)

for V , while tUd ∈ [BG(U(d))γd ,MUPG]
G can be thought of as the universal Thom class for the

universal d-dimensional vector bundle.

Notation 2.9.12 (RO(G)-graded unit). Let G be a compactly metrizable group. Let E be a
commutative homotopy ring G-spectrum, i.e. a commutative algebra object in the homotopy cat-
egory of G-spectra. A class t(V ) ∈ πG

V (E) is an RO(G)-graded unit, if and only if, multiplication
by t(V ) defines an equivalence

t(V ) · (−) : SV ⊗ E
t(V )⊗id−−−−−→ E ⊗ E

mult−−−→ E

of G-spectra.

Note that t(V ) is an RO(G)-graded unit if and only if there exists a class τ(V ) ∈ πG
−V (E)

such that external product

t(V ) · τ(V ) : S ≃−→ SV ⊗ S−V t(V )⊗τ(V )−−−−−−−→ E ⊗ E
mult−−−→ E,

is equal to the unit of the homotopy ring G-spectrum E in πG
0 (E). The RO(G)-graded inverse

τ(V ) ∈ πG
−V (E) of t(V ) is unique.

Lemma 2.9.13. Let G be a compactly metrizable group. Precompostion by the morphism

i : BUγ
G →MUPG

in CAlg(SpG) induces a fully-faithful functor i∗ on slice categories. A morphism

f : BUγ
G → E in CAlg(SpG) factors through i : BUγ

G →MUPG

if and only if for all finite dimensional unitary G-representations V the Thom class

f∗(t
U (V )) ∈ πG

V (E)

is an RO(G)-graded unit.

Proof. Precomposition by the group completion j : BUG → BUPG yields a fully faithful functor

j∗ : CMon (SG)BUPG / → CMon (SG)BUG /

with essential image consisting of those maps f : BG(U)→ X admitting an inverse in the monoid
[BUG, X]G. Slicing over BOPG yields a fully-faithful functor

j∗ :
(
CMon (SG)/BOPG

)
BUPG /

→
(
CMon (SG)/BOPG

)
BUG /

with essential image consisting of factorizations of BG(U) → BOPG through morphisms f :
BG(U)→ X for which f admits an inverse in the monoid [BUG, X]G. Because the G-equivariant
Thom spectrum functor ThG : CMon (SG)/BOPG

→ CAlg(SpG) is a left adjoint, precomposition

by i := ThG(j) : BU
γ
G →MUPG defines a fully-faithful functor

i∗ : CAlg(SpG)MUPG / → CAlg(SpG)BUγ
G /

as well. We denote a right adjoint of ThG by q, so that a morphism f : BUγ
G → E lies in

the essential image of i∗ if and only if its adjoint f ♭ : BUG → q(E) is invertible in the monoid
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[BUG, X]G. By Lemma 2.9.10, this condition on f is equivalent to the condition that for any
unitary G-representation V , the composite G-map

∗ V−→ BUG
f♭

−→ q(E)

represents a unit in [∗, q(E)]G. This precisely requires the existence of a map f ′ : ∗ → q(E)

such that f + f ′ = 0 in [∗, q(E)]G. In particular, the composite ∗ f ′

−→ q(E) → BOPG classifies
−V ∈ RO(G). Unraveling the adjunction, we conclude that f ♭

∗(V ) ∈ πG
0 (q(E)) represents a unit

if and only if there is a morphism of G-spectra f ′
V : S−V → E (adjoint to f ′) such that the

composite

S ≃ SV ⊗ S−V f∗(t
U (V ))⊗f ′

V−−−−−−−−−→ E ⊗ E
mult−−−→ E

is homotopic to the unit of E, i.e. if and only if f∗(t
U (V )) ∈ πG

V (E) is an RO(G)-graded unit. □

Definition 2.9.14. Let G be a compactly metrizable group. A complete flag of G is a N-indexed
diagram

V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ · · ·
of G-linear isometric embeddings of unitary G-representations such that for all n ∈ N≥1 the
orthogonal complement

αn := Vn − Vn−1

of Vn−1 in Vn is irreducible and such that every irreducible complex G-representation is G-
linearly isomorphic to αn for infinitely many n ∈ N≥1. Moreover, we demand that V0 = {0} is
zero dimensional.

For any compactly metrizable group G a complete flag for G exists by the Peter-Weyl theorem.

Construction 2.9.15. Let {Vn}n≥0 be a complete flag for a compactly metrizable group G.
We denote by BUγ

G[V
−1
∗ ] the colimit of the N-indexed diagram

BUγ
G

(−)·tU (α1)−−−−−−−→ BUγ
G⊗S

−V1
(−)·tU (α2)−−−−−−−→ BUγ

G⊗S
−V2

(−)·tU (α3)−−−−−−−→ BUγ
G⊗S

−V3
(−)·tU (α4)−−−−−−−→ · · ·

of left BUγ
G-modules in G-spectra. Consider the collection

S :=

{
BUγ

G⊗S
V (−)·tU (V )−−−−−−→ BUγ

G : V a unitary representation

}
of BUγ

G-module maps. By Remark 2.6.17, the filtered colimit preserving homotopy group func-
tors πH

n (−) : SpG → Ab for H ∈ Lie(G) and n ∈ Z are jointly conservative. So, the same
argument as in the proof of [HH13, Lemma 2.3.] shows that BUγ

G[V
−1
∗ ] is S-local.

Because the tensor product of left BUγ
G-modules preserves colimits in both variables, it fol-

lows that the component map BUγ
G → BUγ

G[V
−1
∗ ] exhibits BUγ

G[V
−1
∗ ] as idempotent algebra

in left BUγ
G-modules. By [Lur17, Proposition 4.8.2.9.], there exists a unique lift of the map

BUγ
G → BUγ

G[V
−1
∗ ] to the category CAlg(Mod(SpG,BU

γ
G)) of commutative algebras in left

BUγ
G-modules. Moreover, it follows from the theory of idempotent algebras, see [Lur17, Propo-

sition 4.8.2.10.] that BUγ
G[V

−1
∗ ] is the initial S-local object of

CAlg(Mod(SpG,BU
γ
G)) ≃ CAlg(SpG)BUγ

G /−.

By Lemma 2.9.13, the map i : BUγ
G →MUPG is another initial S-local object of CAlg(SpG)BUγ

G /−.

We summarize the previous discussion in the following theorem:
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Theorem 2.9.16 (Periodic Bordism is Telescoping). Let G be a compactly metrizable group
and {Vn}n≥0 a complete flag for G. The component inclusion BUγ

G → BUγ
G[V

−1
∗ ] exhibits the

telescoping colimit BUγ
G[V

−1
∗ ] as an idempotent algebra in left BUγ

G-modules in G-spectra. The
unique map

BUγ
G[V

−1
∗ ]→MUPG in the slice category CAlg(SpG)BUγ

G /

is an equivalence.

2.9.2. Telescoping Complex Bordism Spectrum. Now that we understood the periodic complex
bordism spectrum MUPG as a telescope on the suspension spectrum

BUγ
G =

⊕
d∈N

Σ∞ BG(U(d))γd ∈ CAlg(SpG),

we want a similar telescoping description of its summand MUG.

Definition 2.9.17. Let V be a d-dimensional unitary representation of a compactly metrizable
group G. The virtual vector bundle γd − V is defined as the map

γd − V : BG(U(d)) ≃ BG(U(d))× ∗ (γd,−V )−−−−−→ BUPG×BUPG
add−−→ BUPG .

Since dim(γd−V ) = 0, the map γd−V factors through BU0
G. Applying the symmetric monoidal

Thom spectrum functor ThG(−) yields a map of G-spectra

tUd
tU (V )

:= ThG(γd − V ) : Σ∞ BG(U(d))γd ⊗ S−V →MUG

such that the equation
tUd

tU (V )
· tU (V ) = ThG(γd) =: tUd holds in [BG(U(d))γd ,MUPG]

G.

For W an k-dimensional G-representation and m := d+ k the dimension of V ′ := V ⊕W , the
equation

tUd
tU (V )

· tUk
tU (W )

=
tUm

tU (V ′)

holds in [BG(U(d))γd ⊗ BG(U(d))γk ⊗ S−V ′
,MUG]

G.

Corollary 2.9.18. Let G be a compactly metrizable group and {Vn}n≥0 a complete flag for G

with dim(Vn) = dn. Then, the maps
tUdn

tU (Vn)
exhibit the complex bordism spectrum MUG as the

colimit of the following diagram

S→ Σ∞ BG(U(d1))
γd1 ⊗ S−V1 −→ Σ∞ BG(U(d2))

γd2 ⊗ S−V2 −→ · · · (49)

of G-spectra, where for αn := Vn − Vn−1, the transition map

Σ∞ BG(U(dn−1))
γdn−1 ⊗ S−Vn−1 → Σ∞ BG(U(dn))

γdn ⊗ S−Vn

is induced by multiplication with the Thom class tU (αn) ∈ πG
αn

(BUγ
G). (The multiplication map

BUγ
G⊗Sαn → BUγ

G is restricted to the appropriate summands and tensored with S−Vn).

Proof. The telescoping colimit BUγd

G [V −1
∗ ] from Construction 2.9.15 splits as an n ∈ Z indexed

direct sum, with each summand collecting the terms Σ∞ BG(U(d))⊗ S−V with dim(V ) + d = n.
Indeed, the telescope has no maps between summands corresponding to different n ∈ Z. This
direct sum decomposition is compatible with the equivalences

BUγ
G[V

−1
∗ ]

2.9.16−−−→
≃

MUPG
(46)−−→
≃

⊕
d∈Z

MUG⊗S2d.
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The direct summand of BUγd

G [V −1
∗ ] corresponding to 0 ∈ Z is precisely the telescope that we

consider in this Corollary 2.9.18, and the identification of this summand of BUγd

G [V −1
∗ ] with

MUG is via the maps
tUdn

tU (Vn)
. □

Definition 2.9.19. The Thom class of the universal d-dimensional G-equivariant vector bundle
is defined as

tMU(γd) :=
tUd

tU (Cd)
∈ [BG(U(d))γd ,MUG⊗S2d]G.

Pulling back tMU(γd) along the Thomification of a classifying map ξ : X → BG(U(d)) yield a
Thom class

tMU(ξ) := ThG(ξ)
∗(tMU) ∈

[
Xξ,MUG⊗S2d

]G
in the 2d-th MUG-cohomology of the Thom space Xξ of the complex vector bundle ξ. In
particular, for X = ∗ and ξ = V a d-dimensional unitary G-representation, the Thom class

tMU(V ) := ThG(V )∗(tMU(γd)) =
tU (V )

tU (Cd)
∈
[
SV ,MUG⊗S2d

]G
is an RO(G)-graded unit, with inverse tU (Cd)

tU (V )
∈ πG

d−V (MUG). The equation

tUd
tU (V )

= tMU(γd) · tMU(V )−1 holds in [BG(U(d))γd ⊗ S−V ,MUG]
G. (50)

Remark 2.9.20. Suppose surjective morphisms G ↠ Gn exhibit a topological group as an Nop-
indexed limit of compact Lie groups Gn. Let {Vn}n≥1 be a complete flag of G. As promised in
Remark 2.8.3, we now provide an alternative argument that the homotopy ring G-spectra

ResG(MUP) := colimn Infl
G
Gn

(MUPGn
) and BUγ

G[V
−1
∗ ]

agree, where we take the global ring spectrum MUP from [Sch18, Example 6.1.53.]. For each
n ∈ N, let {(V n)i}i≥0 be a complete flag of Gn. The preferred map BUγ

Gn
[(V n)−1

∗ ]→MUPGn

is an equivalence of homotopy ring Gn-spectra by the unitary analog of [Sch18, Theorem 6.1.23.].
We obtain maps

colimn Infl
G
Gn

(MUPGn
)

≃−−→ colimn Infl
G
Gn

BUγ
Gn

[(V n)−1
∗ ]→ BUγ

G[V
−1
∗ ]

of homotopy ring G-spectra. The right map is an equivalence by cofinality, using the colimit
formula for G-equivariant classifying spaces Equation (27) and the fact that any unitary G-
representations is inflated from Gn for some n ∈ N by Theorem 2.1.4.

Note that this argument didn’t need the existence of a symmetric monoidal Thom spectrum
functor. At most, we needed the point-set level construction of Thom spaces that is necessary
to make sense of the homotopy ring G-spectrum BUγ

G. Moreover, the same argument as above
works to prove an equivalence of homotopy ring spectra from the telescope in Equation (49) to
the equivariant complex bordism spectrum

ResG(MU) := colimn Infl
G
Gn

(MUGn
).

Again this argument is independent of Brink’s upcoming results on equivariant Thom spectra.

3. Universality of Equivariant Complex Bordism

For the entire Section 3 we fix a compact abelian Hausdorff group A, whose Pontryagin
dual A∗ := homGrp(A,U(1)) is countable. Equivalently, as explained in Example 2.1.6, A is a
topological group isomorphic to an inverse limit

lim←−
n∈N

(
A0

ϕ1←− A1
ϕ2←− A2

ϕ3←− A3
ϕ4←− . . .

)
(51)
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for some diagram of compact abelian Lie groups Ai ∈ CptLie. The category of these A is denoted
Ab(CptMet), that is, Ab(CptMet) denotes the full subcategory of the category of topological
groups spanned by compactly metrizable abelian groups.

Notation 3.0.1. For E ∈ SpA we write EB for resB(X) and for X ∈ SA,∗ we abbreviate Σ∞X
by X, when the context is clear. We write F (X,E) for the internal Hom-functor of SpA and
[X,E]A for π0 of the mapping spectrum mapSpA

(X,E).

Notation 3.0.2. We denote the unit of the symmetric monoidal category of genuine spectra by
S := Σ∞

+ (∗) ∈ SpA.

Notation 3.0.3 (Notation (Co)-Homology). For E ∈ SpA an A-spectrum andX either a pointed
A-space or another A-spectrum, we denote by

• EA
n (X) := πA

n (E ⊗X) the n-th E-homology of X.

• En
A(X) := πA

−nF (X,E) ∼= [X,Sn ⊗ E]A the n-th E-cohomology of X.

• For a map of A-spaces X → Y we write E∗
A(Y,X) := E∗

A(Y/X) for the E-cohomology
of the cofiber cofib(X → Y ) ∈ SA,∗.

3.1. Complex Orientability, Line Bundles and Projective Space.

Notation 3.1.1 (Equivariant Projective Space). For a unitary A-representation V , we write
CP(V ) := S(V )/U(1) for the A-space of lines in V and γ1 for the tautological A-equivariant
complex line bundle on CP(V ).

Note that when V is one-dimensional then CP(V ) is a point.

Recollection 3.1.2. Recall from Example 2.5.24 that the tautological bundle γ1 induces an
equivalence between the space of lines CP(UA) in a complex A-universe UA and the classifying
space of A-equivariant line bundles CP∞

A := BA(U(1)).

Notation 3.1.3. We write ϵ ∈ A∗ for the trivial 1-dimensional unitary A-representation, so that
CP(ϵ)→ CP∞

A represents the unit of the group object structure of BA(U(1)) ∈ CMon(SA).

A commutative homotopy ring A-spectrum is a commutative algebra object in the homotopy
category of A-spectra, i.e. an A-spectrum E ∈ SpA together with a multiplication E ⊗ E → E
and a unit S→ E satisfying associativity, unitality and commutativity, up to homotopy.

Definition 3.1.4 (Complex Orientation [Col96]). Let E be a commutative homotopy ring
A-spectrum. We call a class x(ϵ) ∈ E2

A(CP∞
A ,CP(ϵ)) complex orientation of E if for all 1-

dimensional unitary representation α ∈ A∗, multiplication by the class

resϵ⊕α(x(ϵ)) ∈ E2
A(CP(ϵ⊕ α),CP(ϵ))

defines an equivalence E ⊗ CP(ϵ ⊕ α)/CP(ϵ) → E ⊗ S2 of A-spectra. Moreover11, we demand
that, under the identification CP(ϵ2)/CP(ϵ) = Σ2S0 of pointed spaces, the class resϵ⊕ϵ(x(ϵ)) is
equal to the two-fold suspension of the ring unit of E.

To relate equivariant complex orientations to Thom spaces, we observe the following descrip-
tion of the Thom space of the homomorphism bundle hom(γ1, V ) as point-set quotient:

Lemma 3.1.5. The based A-equivariant homeomorphism

CP(U)hom(γ1,V ) → CP(V ⊕ U)/CP(V ), ([xu], f) 7→ [f(xu)⊕ xu] (52)

is natural in the pair of unitary A-representations V and U with dim(V ),dim(U) <∞.

11[Col96] does not make this additional assumption.
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By [Sch18, Proposition 1.1.19], the map CP(V )→ CP(V ⊕U) is a Lie(A)-cofibration, so that
Lemma 3.1.5 computes its cofiber in the ∞-category of A-spaces. Passing to the colimit along
A-linear subspaces U ⊆ UA of a complete complex A-universe, we conclude that the zero section
s0 fits into a cofiber sequence

CP(V )→ CP∞
A

s0−→ (CP∞
A )

hom(γ1,V )

in the ∞-category of A-spaces.

Convention 3.1.6. For any pair of complex A-representations V and U with dim(V ) <∞ we

identify the cofiber CP(V ⊕U)/CP(V ) and (CP(U))
hom(γ1,V )

as pointed A-spaces under CP(U)+.

Remark 3.1.7. The bundle hom(γ1, ϵ) is classified by an equivalence (−)−1 : CP∞
A → CP∞

A ,
preserving the point CP(ϵ). Moreover, the induced map on Thom spaces

(CP∞
A )hom(γ1,ϵ) → (CP∞

A )γ1

is an equivalence of pointed A-spaces, as well. We obtain an equivalence CP∞
A /CP(ϵ) ≃ (CP∞

A )γ1

of pointed spaces under (CP∞
A )+.

Definition 3.1.8 (Thom Classes of Line Bundles). Let x(ϵ) ∈ E2
A(CP∞

A ,CP(ϵ)) be a complex
orientation of a commutative homotopy ring A-spectrum E. We define the Thom class tE(γ1) ∈
E2

A (CP∞
A

γ1) of the universal A-equivariant line bundle γ1 as the pullback of x(ϵ) along the above
equivalence. More generally, for any A-equivariant line bundle ξ : X → CP∞

A we define the Thom
class tE(ξ) ∈ E2

A(X
ξ) as the pullback of t(γ1) along the Thomification of the classifying map ξ.

By our convention, the equation tE(hom(γ1, ϵ)) = x(ϵ) holds in the group E2
A(CP∞

A ,CP(ϵ)).
Hence, the relation tE(hom(γ1, ϵ)) = Resϵ⊕α(x(ϵ)) holds in the group E2

A(CP(α)hom(γ1,ϵ)). But,
the bundle hom(γ1, ϵ) on the point CP(α) = ∗, identifies with the bundle α−1 := hom(α, ϵ) ∈ A∗

on the point CP(ϵ) = ∗. We conclude that the relation

tE(α−1) = Resϵ⊕α(x(ϵ)) holds in E∗
A(S

α−1

). (53)

We conclude:

Observation 3.1.9. A class x(ϵ) ∈ E2
A(CP∞

A ,CP(ϵ)) in the cohomology of a commutative ho-
motopy ring A-spectrum E is a complex orientation if and only if for all 1-dimensional complex
A-representations α the Thom class

tE(α) ∈ πA
α−2(E) = E2

A(S
α) ∼= E2

A(CP(ϵ⊕ α−1),CP(ϵ))

is an RO(A)-graded unit, in the sense of Notation 2.9.12. Moreover, tE(γ1) and x(ϵ) uniquely
determine each other.

Example 3.1.10. The Thom class tMU(γ1) ∈ MU2
A (CP∞

A
γ1) from Definition 2.9.19 defines a

complex orientation of the complex bordism spectrum MUA ∈ CAlg(SpA).

The property that t(α) is an RO(A)-graded unit may be interpreted as a Thom isomorphism
for 1-dimensional bundles over a point:

3.1.1. Digression: The Thom Isomorphism. For this digression we fix a complex orientation x(ϵ)
of a commutative homotopy ring A-spectrum E. The Thom homomorphism is defined for an
A-equivariant line bundle ξ over X as the following map

E ⊗Xξ E⊗∆−−−→ E ⊗Xξ ∧X+
t(ξ)∧X−−−−→ E ⊗ S2 ⊗X+ (54)

of A-spectra, where the Thom diagonal ∆ : Xξ → Xξ ∧X+ is the Thomification of the bundle
map ξ → ξ × 0.
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Lemma 3.1.11. The Thom homomorphism is an equivalence of A-spectra.

Proof. To show that the Thom homomorphism is an equivalence in SpA for all equivariant
line bundles ξ : X → CP∞

A on X, we can reduce to the case of orbits X = A/B with B ∈
Lie(A), by the passage to homotopy colimits. Thus, we may assume that the adjoint ξ♭ : ∗ →
ResAB(CP∞

A ) classifies a B-representation β. Employing the Restriction-Induction adjunction12,

we are reduced to showing that the adjoint of tE(ξ) : IndAB(S
β)→ E⊗S2, denoted tE(ξ)♭ : Sβ →

EB ⊗ S2, is an RO(B)-graded unit. Hence, it suffices to prove the following Lemma 3.1.12, as
this means that tEB (ξ♭) = tE(ξ)♭ is an RO(B)-graded unit. □

Lemma 3.1.12. For any closed subgroup B ≤ A, the class ResAB(x(ϵ)) ∈ E∗
B(CP∞

B ,CP(ϵ)) is a
complex orientation of EB .

Proof. The Pontryagin dual B∗ → A∗ of the inclusion A ↪→ B is surjective, so for any β ∈ B∗, we
may choose α ∈ A∗ with ResAB α = β. By assumption, the Thom class t(α) is an RO(A)-graded

unit, and therefore so is the Thom class t(β) = ResAB(t(α)). □

Remark 3.1.13. Our Thom isomorphism for equivariant line bundles and the identification of
the pointed A-spaces CP(α⊕V )/CP(α) and CP(V )hom(γ1,α) under CP(V )+ allows us to compute
EA

∗ (CP(V )+) by induction on dim(V ). We instead present the original arguments, see [CGK00].

3.1.2. Cohomology of Projective Space. To explicitly describe the cohomology of projective space
E∗

A(CP∞
A ) we need two ingredients. First we produce even more classes.

Definition 3.1.14 (Change of base Point). Let x(ϵ) be a complex orientation of E ∈ SpA. For
any α ∈ A∗, we define x(α) ∈ E∗

A(CP∞
A ,CP(α)) as the pullback of x(ϵ) along the A-equivariant

map

(−)⊗ α−1 : CP∞
A /CP(α)→ CP∞

A /CP(ϵ)
induced by tensoring with α−1 on cofibers.

Remark 3.1.15. We have x(α) = tE(hom(γ1, α)) in E∗
A(CP∞

A /CP(α)) = E∗
A(CP∞

A )hom(γ1,α).
Indeed, under the identification from Lemma 3.1.5, the map (−)⊗α−1 corresponds to the induced
map on Thom-spaces by the canonical bundle morphism hom(γ1, α)→ hom(γ1, ϵ).

Construction 3.1.16 (Coordinates). If a unitary A-representation V = α1 ⊕ · · ·αn splits as a
direct sum of 1-dimensional representations αi ∈ A∗, then the bundle map

hom(γ1, V )→ hom(γ1, α1)× · · · × hom(γ1, α1)

induces a map

(CP∞
A )hom(γ1,V ) → (CP∞

A )hom(γ1,α1) ∧ (CP∞
A )hom(γ1,α2) ∧ · · · ∧ (CP∞

A )hom(γ1,αn)

on Thom spaces. Let x(ϵ) be a complex orientation of E ∈ SpA. We denote the pullback of the
exterior product x(α1) ∧ · · · ∧ x(αn) by

x(V ) ∈ E2n
A (CP∞

A )hom(γ1,V ) = E2n
A (CP∞

A ,CP(V )).

We define the coordinate y(V ) ∈ E2n
A

(
CP∞

A +

)
as the class obtained from x(V ) by forgetting the

subspace. Observe that in E∗
A

(
CP∞

A +

)
y(V ) = y(α1) · · · y(αn) and y(αi) = ((−)⊗ α−1

i )∗y(ϵ). (55)

12For details, see the proof of Lemma 3.5.8.
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Now, that we have enough classes, the second ingredient is a filtration of CP∞
A . To this end,

we choose a complete flag {Vn}n≥0 for A, in the sense of Definition 2.9.14. For each n ≥ 1, we
denote the orthogonal complement of Vn−1 in Vn by αn ∈ A∗. The advantage of having chosen
a complete flag is the canonical equivalence colimn CP(Vn)→ CP∞

A of A-spaces.
In Lemma 3.1.5, we constructed a cofiber sequence

CP(Vn)+ → CP(Vn+1)+ → CP(αn+1)
hom(γ1,Vn)

of pointed A-spaces. We identify CP(αn+1)
hom(γ1,Vn) with Sα−1

n+1⊗Vn . If (E, x(ϵ)) is a complex
oriented A-spectrum and n ≥ 1 an integer, we get a commutative13 diagram

E ⊗ CP(Vn)+ E ⊗ CP(Vn+1)+ E ⊗ Sα−1
n+1⊗Vn

⊕n−1
i=0 E[2i]

⊕n
i=0 E[2i] E[2n]

⊕n−1
i=0 y(Vi)

⊕n
i=0 y(Vi) t(α−1

n+1α1)∧···∧t(α−1
n+1αn)

where by convention y(V0) = y(0) is the unit of E. By assumption, see Observation 3.1.9, the
right hand vertical map is an equivalence. We conclude by induction on n ≥ 1, that the middle
vertical map is an equivalence (of homotopy E-modules) in SpA.
Similarly, we apply F (−, E) to the same cofiber sequence of pointed A-spaces and do an analogous
induction, to see that

n⊕
i=0

E[−2i]
⊕n

i=0 y(Vi)−−−−−−−→ F (CP(Vn+1)+, E) (56)

is an equivalence in SpA. We have proven the first statement of the following Proposition:

Proposition 3.1.17 (Cohomology of Projective Space, [Col96]). Suppose (E, x(ϵ)) is a com-
plex oriented A-spectrum and {Vn}n≥0 a complete flag of A. The pullback E∗

A

(
CP∞

A +

)
→

E∗
A

(
CP(Vn+1)+

)
sends the (n + 1)-classes y(0), y(V1), · · · , y(Vn) to an E∗

A-module basis. The
ring map

E∗
A

(
CP∞

A +

)
→ lim←−

n

E∗
A (CP(Vn)+) (57)

is an isomorphism. Any element z ∈ E∗
A(CP∞

A +) can be expressed as

z =

∞∑
i=0

ai · y(Vi) for unique ai ∈ EA
∗ . (58)

The kernel of the projection E∗
A

(
CP∞

A +

)
→ E∗

A (CP(Vn+1)+) is generated as an ideal by y(Vn+1).

Proof. The second part of this proposition follows because the lim1-term of the relevant Milnor
sequence vanishes. We conclude that the homomorphism E∗

A(CP∞) →
∏

i∈N E∗
A whose i-th

component extracts the coefficient of the basis element y(Vi) in CP(Vi+k) (k ≥ 1) is an E∗
A-

module isomorphism. We obtain the unique expression (58). By its very construction, the class
y(Vn+1) lies in the kernel of the projection E∗

A

(
CP∞

A +

)
→ E∗

A (CP(Vn+1)+). Conversely, by

Equation (55), the class y(Vn+1) divides y(Vi) for i ≥ n + 1, so y(Vn+1) divides any element in
the kernel of E∗

A

(
CP∞

A +

)
→ E∗

A (CP(Vn+1)+). □

13By construction x(αi) pulls back to tE(hom(γ1, αi)) = tE(α−1
n+1αi) on CP(αn+1) = ∗.
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Convention 3.1.18. If E is a complex orientable commutative homotopy ring A-spectrum, we
view E∗

A

(
CP∞

A +

)
as a complete topological ring, linearly topologized via the isomorphism in

Equation (57).

The freeness of E⊗CP(Vn) and F (CP(Vn), E), which we have seen before the proof of Proposi-
tion 3.1.17, imply that the universal coefficient map of E applied to CP∞

A , as well as the following
two Künneth maps, are isomorphisms.

Corollary 3.1.19 ((Co)homology of Products of Projective Spaces). Let E be a complex ori-
entable A-spectrum. The homological Künneth map

EA
∗
(
CP∞

A +

)⊗n −→ EA
∗
(
(CP∞

A )n+
)

is an isomorphism of EA
∗ -algebras. The cohomological Künneth map

E∗
A

(
CP∞

A +

)⊗n → E∗
A

(
(CP∞

A )n+
)

induces an isomorphism

E∗
A

(
CP∞

A +

)⊗̂n Künneth−−−−−→ E∗
A

(
(CP∞

A )n+
)

of completely linearly topologized E∗
A-algebras.

3.2. Complex Orientation and Equivariant Formal Group Laws.

3.2.1. Motivation. The definition of an A-equivariant formal group law is tailor-made to capture
the structure and properties of E∗

A(CP∞
A ), for E complex oriented. However, the notion should

be entirely algebraic. In particular, an A-equivariant formal group law can be defined over any
graded commutative ring k. Observe that the fixed points (CP∞

A )A identify with

A∗ × CP∞ =
⊔

α∈A∗

{α} × CP∞

as a group object in spaces S. This can either be seen in the model, via the homeomorphism

A∗ × CP∞ → CP∞(UA)A, (α, l) 7→ α⊗ l,

or via adjunction, by inspecting the mapping spaces BglAn → BglU(1) in the global orbit category
Glo. The Künneth isomorphism Corollary 3.1.19 implies that E∗

A

(
CP∞

A +

)
becomes a co-group

object in linearly topologized graded E∗
A-algebras. Moreover, the map14 of homotopy group

objects A∗ → CP∞
A induces a morphism of co-group objects in linearly topologized graded E∗

A-
algebras:

θ : E∗
A

(
CP∞

A +

)
→ E∗

A(A
∗) =

∏
α∈A∗

E∗
A = (E∗

A)
A∗

(59)

To see the continuity, note that under Definition 2.9.14, θ is the inverse limit of the maps
E∗

A (
⊔n

i=0 CP(αi)→ CP(Vi))+ for a chosen complete flag {Vn}n≥0 for A.

14Because CP∞ is connected, this map is unique up to homotopy.
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3.2.2. Definition of Equivariant Formal Group Law. For the remainder of this Section 3.2, we fix
a graded commutative ring k. We think of k as k = E∗

A for some complex oriented cohomology

theory E ∈ SpA. The topological ring kA
∗
=
∏

A∗ k admits a continuous co-multiplication map

∆ : kA
∗
→ kA

∗×A∗ ∼= kA
∗
⊗̂kk

A∗

which sends a function f : A∗ → k to the function ∆(f) : A∗ × A∗ → k mapping (α, β) to
f(αβ) ∈ k.15 We endow the category of completely linearly topologized k-algebras with the
structure of a symmetric monoidal category, via the completed tensor product ⊗̂. The above
discussion gives kA

∗
the structure of a co-group object in that category.

Definition 3.2.1. For a k-algebra homomorphism θ : R → kA
∗
and α ∈ A∗, we write θ(α) :

R→ k for the composite of θ with the projection to the α-factor. We call θ(α) the augmentation
at α. For a sequence Vn = (α1, · · · , αn) with αi ∈ A∗, we call the product ideal

IVn
:= ker(θ(α1)) · · · ker(θ(αn)) ⊴ R

the augmentation ideal at Vn. Note that

IVn
= Iα1

∩ · · · ∩ Iαn
(60)

because the augmentation ideals are the preimage of coprime ideals.

We paraphrase [CGK00, Definition 11.1.]:

Definition 3.2.2 (Equivariant Formal Group Law). A (graded) A-equivariant formal group law
F is a tuple (k,R, θ, y(ϵ)) of a (graded) commutative ring k, a co-commutative co-group object
in completely linearly topologized (graded) k-algebras R, a map of co-group objects θ : R→ kA

∗

and a coordinate y(ϵ) ∈ R (homogenous of degree −2), such that the following hold:

(1) For some complete flag16 of A the canonical homomorphism

R→ lim←−
n∈N

R/IVn

is an isomorphism of topological rings.
(2) The coordinate y(ϵ) ∈ R is regular, i.e. not a zero divisor, and generates the kernel of

the augmentation θ(ϵ).

Remark 3.2.3. We may replace condition (1) with either of the the following “choice free”
conditions:

(1’) the linear topology on R is generated by finite products of the augmentation ideals Iα
for α ∈ A∗.

(1”) Condition (2) holds for every complete flag for A.

Remark 3.2.4. It is shown in [CGK00, Appendix B.] that the existence of a co-inverse can
be removed from the Definition 3.2.2 of a A-equivariant formal group law. That is, it suffices
to assume that R is an co-commutative co-monoid object. Even though their result is phrased
for an abelian compact Lie group A, the assumption that the Pontryagin dual A∗ is finitely
generated is not needed: Their proof goes through for compactly metrizable abelian groups.

Example 3.2.5 (Formal Group Law associated to Complex Orientation). Let

x(ϵ) ∈ E∗
A(CP∞

A ,CP(ϵ))
be a complex orientation of a commutative homotopy ring A-spectrum E. Let y(ϵ) ∈ E∗

A

(
CP∞

A +

)
be the coordinate obtained from x(ϵ) by forgetting the base point. Set k := πA

∗ (E) and topologize

15The literature calls kA
∗
the global sections of the constant formal group scheme associated to A∗.

16See Definition 2.9.14 for our definition of a complete flag.
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R := E∗
A

(
CP∞

A +

)
as in Convention 3.1.18. By Proposition 3.1.17, the tuple (k,R, θ, y(ϵ)) is an

A-equivariant formal group law, where the morphism θ was defined in Equation (59). When we
invert the cohomological grading on E∗

A

(
CP∞

A +

)
, then (k,R, θ, y(ϵ)) is a graded A-equivariant

formal group law over the graded commutative ring πA
∗ (E).

3.2.3. The underlying k-module of a Formal Group Law. By passage to opposite categories, any
A-equivariant formal group law defines a group object Spf(R) in formal k-schemes together with
a group object morphism θ : A∗

k → Spf(R). Here A∗
k denotes the constant formal group scheme

at the dual group A∗, base changed to k. In particular, A∗ acts on Spf(R). Let us give this
action a name:

Construction 3.2.6. Given a (graded) A-equivariant formal group law F = (k,R, θ, y(ϵ)), we
construct an action of A∗ on R: For any α ∈ A∗

lα : R
∆−→ R⊗̂kR

R⊗̂kθ(α
−1)−−−−−−−→ R,

defines a continuous k-algebra homomorphism such that lαβ = lα ◦ lβ for all α, β ∈ A∗ and
lϵ = idR. Moreover, for all α, β ∈ A∗ we have θ(αβ−1) = θ(α) ◦ lβ .

Topologically, the map lα : E∗
A

(
CP∞

A +

)
→ E∗

A

(
CP∞

A +

)
is induced by the A-map

(−)⊗ α−1 : CP∞
A → CP∞

A .

In Equation (55), we defined the coordinate y(α) by pulling back y(ϵ) along (−)⊗ α−1. We can
mimick this construction algebraically.

Definition 3.2.7. Given a (graded) A-equivariant formal group law F = (k,R, θ, y(ϵ)). For
α ∈ A∗, we write y(α) ∈ R for the element lα(y(ϵ)) ∈ R. Note that we have

y(αβ) = lα(y(β)) for α, β ∈ A∗ (61)

The equation θ(ϵ) = θ(α) ◦ lα implies that y(α) is regular and generates the augmentation ideal
Iα = ker(θ(α)). More generally, for a sequence Vn = (α1, · · · , αn) with αi ∈ A∗, we define the
coordinate y(Vn) := y(α1) · · · y(αn). By Equation (60), y(Vn) ∈ R is a regular element generating
the augmentation ideal IVn

.

Warning 3.2.8. In [Hau22], the author denotes lV by lV −1 , consequently y(V ) corresponds to
y(V −1).

For any elements α1, · · · , αn ∈ A∗, the sequence of k-modules

0→ R/y(α2) · · · y(αn)
·y(α1)−−−−→ R/y(α1) · · · y(αn)

θ(α1)−−−→ k → 0 (62)

is split exact. We conclude by induction on n ≥ 1, that the set of n elements

{1, y(α1), y(α1) · y(α2), · · · , y(α1) · · · y(αn−1)}

restrict to an k-module basis of R/y(α1) · · · y(αn) = R/IVn
. By condition (1) of an A-equivariant

formal group law, for a chosen complete flag {Vn}n≥0 for A, any element z ∈ R can be expressed
as

z =

∞∑
i=0

ai · y(Vi) for unique ai ∈ k, (63)

just as in the “topological” setting (58).
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3.2.4. Euler Classes. We will see that the Euler classes control the multiplicative structure of
the underlying algebra of an A-equivariant formal group law. Moreover, the localization at Euler
classes computes the geometric fixed points of a complex oriented cohomology theory.

Let’s fix an (graded) equivariant formal group law F = (k,R, θ, y(ϵ)). While the k-module
structure of R is determined, the A∗-action is not. For α ∈ A∗ − {ϵ}, we might wonder how the
points θ(α) : Spec(k) → Spf(R) and θ(ϵ) : Spec(k) → Spf(R) intersect. The scheme-theoretic
intersection is computed as Spec(−) of the k-algebra k ⊗R k, where k is an R-algebra via the
augmentations θ(α) on the left and θ(ϵ) on the right. The k-algebra homomorphism

k → k ⊗R k, a 7→ 1⊗R a

is surjective with kernel generated by the Euler class

eα := θ(ϵ)(y(α)) = θ(α−1)(y(ϵ)). (64)

We conclude that the scheme theoretic intersection is empty if and only if eα ∈ k is a unit.
We denote the co-inverse of R by χ. The regular elements χ(y(ϵ)) and y(ϵ) differ by a unit in

R, as they generate the same ideal Iϵ. Because eα = θ(α)(χ(y(ϵ)), the Euler classes eα and eα−1

differ by a unit in k. We have eα = 0 if and only if θ(α) = θ(ϵ):

Lemma 3.2.9. The Euler class eα ∈ k vanishes if and only if there is a unit u ∈ R× with
y(α) = u · y(ϵ).

Proof. When eα−1 = θ(α)(y(ϵ)) = 0, then y(α) divides y(ϵ) ∈ Iα. When, eα = 0, then y(ϵ)
divides y(α). So, the regular elements y(α) and y(ϵ) mutually divide each other. □

If the formal group law F is associated to a complex orientation x(ϵ) ∈ E∗
A(CP∞

A ,CP(ϵ)), then
eα can be obtained from the Thom-class t(α) ∈ E2

A(S
α) by pulling back along the zero section

S0 → Sα.

3.3. Changing the Symmetry Group: Topologically and Algebraically.

3.3.1. Topologically: Pushforward Orientation. In Lemma 3.1.12 we discussed how to restrict
complex orientations to subgroups. In this section, we will instead discuss the pushforward of a
complex orientation of a commutative homotopy ring A-spectrum along φ∗ : SpA → SpB :

Convention 3.3.1. Throughout this Section 3.3, φ : A → B denotes a continuous group
homomorphism. We denote the right-adjoint of the inflation-restriction functor φ∗ : SpB → SpA
by φ∗ : SpA → SpB .

For a complex oriented A-spectrum (E, x(ϵ)), the pushforward of complex orientation, will
allows us to pushforward the associated A-equivariant formal group law over π∗

A(E) to an B-
equivariant formal group law over π∗

B(φ∗E). The identification π∗
A(E) ∼= π∗

B(φ∗E) will be our
starting point to describe the pushforward (a.k.a. co-restriction) of equivariant formal group
laws algebraically.

Construction 3.3.2 (Pushforward of Complex Orientations). Let x(ϵ) ∈ E2
A(CP∞

A ,CP(ϵ)) be a
complex orientation of a commutative homotopy ring A-spectrum E. We define the pushforward
complex orientation φ∗(x(ϵ)) ∈ (φ∗E)2B(CP∞

B ,CP(ϵ)) as the adjoint of the composite A-map

φ∗(CP∞
B )/CP(ϵ)→ CP∞

A /CP(ϵ) x(ϵ)−−→ E ⊗ S2.

Lemma 3.3.3. In the situation of the previous Construction 3.3.2, the pushforward φ∗(x(ϵ)) is
a complex orientation of the commutative homotopy ring B-spectrum φ∗E.
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Proof. In the following proof, we will denote the adjoint of any map f : φ∗X → Y by f# : X →
φ∗Y . Let α ∈ B∗. By Observation 3.1.9, the composite

t(α) : φ∗Sα = CP(ϵ⊕ φ∗α−1)/CP(ϵ)→ CP∞
A /CP(ϵ) x(ϵ)−−→ E[2]

represents an RO(A)-graded unit. We choose an RO(A)-graded inverse τ(α) ∈ EA
2 (φ

∗(Sα)). To
prove the lemma, we need to show that the composite

t(α)# : Sα = CP(α−1 ⊕ ϵ)/CP(ϵ)→ CP∞
B /CP(ϵ) φ∗x(ϵ)−−−−→ φ∗E[2]

represents an RO(B)-graded unit. Note that t(α)# is the adjoint map of t(α), so our best guess
for an inverse is to consider τ(α)#, where τ(α)# is defined as the adjoint of a representative

τ(α) : φ∗(S2) = S2 τ(α)−−−→ E ⊗ φ∗(S2)

of the class τ(α). We claim that the composite

S2 τ(α)#−−−−→ φ∗(E ⊗ φ∗(Sα))
π−1

−−→ φ∗E ⊗ Sα

is the required RO(B)-graded inverse of t(α)#, where π is the projection formula17, which is an
equivalence by [BDS16a, Proposition 2.15.]. We need to show that the left most composite from
the top left corner to the bottom right corner in the commutative diagram

(Sα ⊗ S−2)⊗ S2 Sα ⊗ S−2 ⊗ S2

φ∗(E)⊗ φ∗(E ⊗ φ∗Sα) φ∗(E ⊗ E ⊗ φ∗Sα) φ∗(E ⊗ φ∗SV )

φ∗(E)⊗ φ∗(E)⊗ Sα φ∗(E ⊗ E)⊗ Sα φ∗(E)⊗ Sα

t(α)#⊗τ(α)# (t(α)⊗τ(α))#

((m⊗1)◦(t(α)⊗τ(α))#

lax

1⊗π−1

φ∗(m⊗1)

π−1 π−1

lax⊗1 φ∗(m)⊗1

is homotopic to Sα ⊗ u#. Here u : S → E represents the unit of E and m : E ⊗ E → E the
multiplication. Because τ(α) is defined as the RO(A)-graded inverse of the class t(α), the right-
most composite is homotopic to π−1 ◦ (φ∗Sα ⊗ u)#. It is left to be proven that (φ∗Sα ⊗ u)# is
homotopic to π ◦ (Sα ⊗ u#). In the following square the right-diagram commutes by naturality.

φ∗(φ
∗(Sα ⊗ S)) φ∗(φ

∗(Sα)⊗ φ∗(S)) φ∗(φ
∗Sα ⊗ E)

Sα ⊗ S Sα ⊗ φ∗φ
∗(S) Sα ⊗ φ∗E

≃ φ∗(φ
∗Sα⊗u)

π

Sα⊗φ∗u

π

To check that the left square commutes pass to adjoint maps and use the triangle identity.
Now, via first going vertically in the outer diagram we get (φ∗Sα ⊗ u)#. When we instead go
horizontally first, we get π ◦ (Sα ⊗ u#). □

In the situation of Lemma 3.3.3, we have an A-equivariant graded formal group law F =
(k,R, θ, y(ϵ)) with k = π∗

AEA and R = E−∗
A

(
CP∞

A +

)
, associated to the orientation x(ϵ) of E.

We also have an B-equivariant graded formal group law

φ∗F = (k, φ∗R, φ∗θ, φ∗(y(ϵ))),

associated to the pushforward complex orientation φ∗x(ϵ), where φ∗R := (φ∗E)−∗ (CP∞
B +

)
. In

detail, φ∗(y(ϵ)) is obtained from φ∗x(ϵ) by pulling back along (CP∞
B )+ → CP∞

B /CP(ϵ) and φ∗θ
denotes the pullback along B∗ → CP∞

B .

17In the context of equivariant homotopy theory the projection formula is also known as the shearing
isomorphism.
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We want to describe how φ∗F arises from F , algebraically. To this end, we consider the
k-algebra map

R = E−∗
A

(
CP∞

A +

)
→ E−∗

A

(
φ∗CP∞

B +

) ∼= (φ∗E)−∗ (CP∞
B +

)
= φ∗R. (65)

induced by the A-map φ∗CP∞
B → CP∞

A and adjunction. We choose a complete flag {Vn}n≥0 for
B, as in Definition 2.9.14. From the explicit description Proposition 3.1.17 of the Cohomology
of equivariant projective spaces, we conclude that

E−∗
A

(
φ∗CP∞

B +

)
→ lim←−

n

E−∗
A (CP(φ∗Vn)+) = lim←−

n

R/y(φ∗Vn)

is a k-algebra isomorphism. In other words, φ∗R is isomorphic (under R) to the completion of
R at the ideals

y(α1) · · · y(αn) for α1, · · · , αn ∈ Im(B∗ φ∗

−−→ A∗). (66)

The continuous k-algebra homomorphism φ∗θ : φ∗R → kB
∗
is uniquely determined by making

the diagram

R kA
∗

φ∗R kB
∗

θ

φ∗θ

(67)

commute. Similarly, the co-group structure of φ∗R is uniquely determined by the property that
R→ φ∗R is a morphism of co-group objects in completely linearly topologized k-algebras. Lastly,
R→ φ∗R sends y(ϵ) to φ∗y(ϵ).

3.3.2. Co-Restriction of Equivariant Formal Group Laws. One upshot of the previous discus-
sion is that the we didn’t needed to know whether the A-equivariant formal group law F =
(k,R, θ, y(ϵ)) “came from homotopy theory”: We could describe the co-restricted B-equivariant
formal group law φ∗F anyways.

Construction 3.3.4. To analyze this functoriality we construct the category FGL, respectively
FGLgr, of equivariant (graded) formal group laws: We denote the subcategory of topological
groups spanned by compactly metrizable abelian groups by Ab(CptMet). The objects of the

category FGL(gr) are pairs (A,F ) of a group A ∈ Ab(CptMet) and an A-equivariant (graded)
formal group law F . A morphism (A,F ) to (B,F ′) consists of a continuous group homomorphism
φ : A→ B and a morphism of (graded) equivariant formal group laws

F = (k,R, θ, y(ϵ))→ F ′ = (k′, R′, θ′, y(ϵ)′)

over φ: The morphism F → F ′ consists of a (graded) ring homomorphism k → k′ and a morphism
of co-group objects R→ R′ in completely linearly topologized (graded) k-algebras such that the
diagram

R kA
∗

R′ (k′)B
∗

θ

θ′

commutes and y(ϵ) is sent to y(ϵ)′.

There is an obvious forgetful functor fgt : FGL(gr) → Ab(CptMet). We will see that this
forgetful functor encodes co-restriction of equivariant formal group laws via its straigthening
CptAb→ Cat(2,1), A 7→ A -FGL.
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Construction 3.3.5 (Co-Restriction). For anA-equivariant (graded) formal group F = (k,R, θ, y(ϵ))
and a morphism φ : A→ B in Ab(CptMet) we define a cocartesian lift F → φ∗F of φ mimicking
the effect on equivariant formal group laws caused by pushing forward a complex orientation
along φ. We define the co-restricted B-equivariant formal group law

φ∗F = (k, φ∗R,φ∗θ, φ∗y(ϵ))

together with a morphism F → φ∗F as follows: we let R → φ∗R be the completion of R at
the ideals described in Equation (66). Then, φ∗R admits a unique co-group structure in linearly
topologized k-algebras such that R→ φ∗R is a homomorphism of co-group objects. The co-group
homomorphism φ∗θ is defined as the unique map making the diagram (67) commute. Lastly, to

extend this to a morphism F → φ∗F in FGL(gr) over φ we need to define φ∗y(ϵ) as the image of
y(ϵ) under the completion R→ φ∗R.

The morphism F → φ∗F is cocartesian, because completion is left adjoint to the forgetful
functor from completely linearly topologized k-algebras to linearly topologized k-algebras.

Definition 3.3.6 (Global Functoriality). The straightening

Ab(CptMet)→ Cat(2,1), A 7→ A -FGL(gr), (φ : A→ B) 7→ (F 7→ φ∗F ),

of the co-cartesian forgetful functor fgt : FGL(gr) → Ab(CptMet) sends A ∈ Ab(CptMet) to the
category of (graded) A-equivariant formal group laws

A -FGL(gr) := FGL(gr) ×Ab(CptMet) {A}.

Remark 3.3.7. As we saw in Section 3.3.1, if an A-equivariant formal group law F is associated
to a complex orientation x(ϵ) of E ∈ SpA, then the B-equivariant formal group law, associated
to the pushforward complex orientation φ∗x(ϵ) of φ∗E ∈ SpB is canonically isomorphic to φ∗F .

3.4. Equivariant Lazard Rings and Inverse Limits of Groups. For any compact abelian
Lie group A, there exists a “universal A-equivariant formal group law”, constructed by [CGK00,
Cole, Kriz and Greenlees]. We will generalize their result to all groups of our setup (51).

3.4.1. Base Change of Formal Group Laws: Algebraically. To understand the base-change of

equivariant formal group laws, we show that the forgetful functor A -FGL(gr) → CRing(gr) is a
cocartesian fibration.

Construction 3.4.1 (Base Change). Consider a (graded) A-equivariant formal group law F =
(k,R, θ, y(ϵ)) and a homomorphism k → k′ of (graded) commutative rings. The tuple

k′⊗̂kF := (k′, k′⊗̂kR, k′⊗̂kθ, 1⊗̂ky(ϵ)),

defines a (graded) A-equivariant formal group law and R → k′⊗̂kR extends k → k′ to a base-

change morphism F → k′⊗̂kF in the category A -FGL(gr). It is clear that any morphism F → F ′

of (graded) equivariant formal group laws over k → k′ factors uniquely through the base-change
F → k′⊗̂kF

′. Because these base-change morphisms compose, they form cocartesian lifts of

k → k′ along the forgetful functor fgt : A -FGL(gr) → CRing(gr).

We claim that the straigthening of the forgetful functor A -FGL(gr) → CRing(gr), denoted

CRing(gr) → Cat(2,1), k 7→ A -FGLk, (k → k′) 7→ (F 7→ k′⊗̂kF ),

factors through Set ⊂ Cat(2,1) . Indeed, by Equation (63), for F, F ′ ∈ A -FGL
(gr)
k there is at

most one morphism F → F ′ in A -FGL
(gr)
k , and any such morphism is an isomorphism.



58 FORMAL GROUP LAWS AND STABLE HOMOTOPY THEORY OVER PROFINITE ABELIAN GROUPS

Theorem 3.4.2 ([CGK00, 14.3.]). For any compact abelian Lie group A, there is a (graded)-
commutative ring LA, called the Lazard Ring, co-representing the functor

CRing(gr) → Set, k 7→ A -FGLk

In particular, there is a universal A-equivariant formal group law F uni ∈ A -FGLLA
, so that

the statement of Theorem 3.4.2 can be reformulated as follows: The functor

CRing
(gr)
LA/ → A -FGL(gr), (LA → k) 7→ k⊗̂LA

F uni

is an equivalence of categories (over the forgetful functors to CRing(gr)).
In this thesis section, we extend Theorem 3.4.2 to all A ∈ Ab(CptMet). To do so, we need

the following

Proposition 3.4.3. Let A = lim←−n∈N
An be an inverse limit in Ab(CptMet) with projections

φn : A→ An, then

A -FGL(gr) → lim←−
n

(
An -FGL(gr)

)
, F 7→ ((φn)∗F )n

is an equivalence of categories. In other words,

Ab(CptMet)→ Cat(2,1), A 7→ A -FGL(gr), (68)

preserves limits indexed by Nop.

We prove this Proposition 3.4.3 at the end of the section. For now, let us record the following
consequence:

Construction 3.4.4. Suppose

A = lim←−
n∈N

(
A0

ϕ1←− A1
ϕ2←− A2

ϕ3←− A3
ϕ4←− . . .

)
(69)

is an inverse limit in Ab(CptMet) with each An a Lie group. Then, (ϕn)∗F
uni is classified by a

(graded) ring homomorphism LAn−1 → LAn . We can define the Lazard ring LA := colimn LAn .
The component maps LAn → LA induce an equivalence of categories,

CRing
(gr)
LA/ → lim←−

n∈Nop

(
CRing

(gr)
LAn/

)
between the slice category and the inverse limit of slice categories.

The composite

A -FGL(gr) 3.4.3−−−→ lim←−
n

(
An -FGL(gr)

)
3.4.2−−−→ lim←−

n

(
CRing

(gr)
LAn/

)
≃−→ CRing

(gr)
LA/ (70)

is an equivalence over the forgetful functors to CRing(gr). We have proven the following:

Theorem 3.4.5. Let A = lim←−n∈N An be an inverse limit of abelian compactly metrizable groups.

The (graded) commutative ring LA := colimn LAn
corepresents the functor

CRing(gr) → Set, k 7→ A -FGLk

that sends a (graded) commutative ring to the set of A-equivariant formal group laws over k.

To proof of Proposition 3.4.3 starts with the following

Lemma 3.4.6. Let k be a (graded) commutative ring and let λ : Nop → FGL(gr) be a diagram

such that λ factors through FGL
(gr)
k . Then, the limit of λ exists and is preserved by the forgetful

functor FGL(gr) → Ab(CptMet).
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Proof. Suppose λ(n) = (An, F
n) with Fn = (k,Rn, θn, y(ϵ)n) an An-equivariant formal group

law. Our strategy is to construct limλ = (A,F ) and the A-equivariant formal group law F =
(k,R, θ, y(ϵ)) by hand: Here, we write A := lim←−n

An ∈ Ab(CptMet) and define R := lim←−n
Rn to

be the limit in the category of topological k-algebras. This inverse limit can be computed on
underlying k-algebras. Moreover, R is completely linearly topologized: The topology is generated
by the kernels of the composite

R→ Rn → Rn/Iα1
· · · Iαi

(71)

where n runs through N and α1, . . . , αi run through A∗
n. We define θ as the composite

R = lim←−
n∈N

Rn
θn−→ lim←−

n∈N
kA

∗
n

∼=←− kA
∗
.

Consider α ∈ A∗. There is an n ∈ N so that some α(n) ∈ A∗
n lifts α along A∗

n → A∗. For
m ≥ n, we denote by α(m) ∈ A∗

m the image of α(n) along A∗
n → A∗

m. We define y(α) ∈ R as the
unique element that is sent to y(α(m)) under the projection R→ Rm for all m ≥ n. Because any
left exact functor preserves split exact sequences, y(α) ∈ R is regular and generates the kernel
of θ(α). Now given α1, . . . , αi ∈ A∗, we may choose n ∈ N and lifts α1(n), . . . , αi(n) ∈ A∗

n as
before. Using the short exact sequence (62), we see by induction on i ≥ 1 that R→ Rn induces
an isomorphism

R/y(α1) · · · y(αi)→ Rn/y(α1) . . . y(αi). (72)

In particular, the element y(α1) · · · y(αi) generates the kernel of the composite in Equation (71).
We conclude that R→ limα1,...,αi∈A∗ R/y(α1) · · · y(αn) is an isomorphism.

We deduce that R⊗̂kR → lim←−n
Rn⊗̂kRn is an isomorphism as well. We define the co-

multipliction ∆ : R→ R⊗̂kR as the composite

R = lim←−
n

Rn
∆n−−→ lim←−

n

Rn⊗̂kRn
∼= R⊗̂kR.

Together with a similar construction of a co-inverse, this makes F = (k,R, θ, y(ϵ)) into a (graded)

A-equivariant formal group law. Moreover, (A,F ) ∈ FGL(gr) is indeed the limit of the functor

λ : N → FGL(gr) because any cone over λ provides unique morphisms into A and R, which are
compatible with all structure. □

Proof of Proposition 3.4.3. We are given a functor Nop → Ab(CptMet) sending n to An. We
define the group A := lim←−n

An and write φn : A → An for the projection. Our goal is to show

that the comparison functor

c : A -FGL(gr) → lim←−
n

(An -FGL(gr)), F 7→ ((φn)∗F )n

is an equivalence, where the co-restriction (φn)∗F was discussed in Construction 3.3.5. We
proceed by constructing an inverse functor. The evaluations induce an equivalence of categories:

Funco(Nop,FGL(gr))×Fun(Nop,CptAb) {n 7→ An} → lim←−
n

(An -FGL)

so that an object of lim←−n
(An -FGL) is represented by a functor λ : Nop → FGL(gr), sending all

morphism to cocartesian morphism, together with a natural isomorphism between the composite

Nop λ−→ FGL(gr) fgt−−→ CptAb

and n 7→ An. Because cocartesian morphisms in FGL(gr) are sent to isomorphisms under

FGL(gr) → CRing(gr), we can choose k ∈ CRing(gr) so that λ is in the essential image of
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FGL
(gr)
k → FGL(gr). By Lemma 3.4.6, the limit limλ ∈ FGL(gr) exists and canonically lies

in A -FGL(gr). This construction is natural in λ and assembles into a functor

r : lim←−
n

(
An -FGL(gr)

)
→ A -FGL(gr), λ 7→ lim←−

n

λ(n).

For a fixed A-equivariant formal group law F ∈ A -FGL(gr), the morphisms F → (φn)∗F from

Construction 3.4.1 assemble into a morphism F → limn((φn)∗F ) in FGL(gr). We may view this

as a morphism F → r ◦ c(F ) in A -FGL(gr) lifting the identity of k ∈ CRing(gr). As A -FGL
(gr)
k

is a groupoid, the morphism F → r ◦ c(F ) is an isomorphism. This construction is natural in

F ∈ A -FGL(gr) and assembles into a natural equivalence id
≃
=⇒ r ◦ c.

Conversely, if we fix a point in lim←−n
(An -FGL(gr)) represented by λ : Nop → FGL(gr) as

above, the projection r(λ) := limn λ(n) → λ(n) in FGL(gr) (which lies over φn in Ab(CptMet))

induces a morphism (φn)∗r(λ) → λ(n) in An -FGL(gr). Running through n, this assembles into

a morphism c(r(λ)) → λ in lim←−n
(An -FGL(gr)). To see that c(r(λ)) → λ is an isomorphism, it

suffices to check that each projection (φn)∗r(λ)→ λ(n) is an isomorphism in An -FGL. For each

n ∈ N, this morphism lifts the identity of k ∈ CRing(gr) and An -FGL
(gr)
k is a groupoid. Thus,

this morphism c(r(λ)) → λ is an isomorphism. We have thus produced a natural equivalence

c ◦ r ≃
=⇒ id. □

Lemma 3.4.7. Let (E, x(ϵ)) be a complex oriented A-spectrum and let h : E → Ẽ be homomor-

phism of commutative homotopy ring A-spectra. Then h(x(ϵ)) ∈ Ẽ∗
A(CP∞

A ,CP(ϵ)) is a complex

orientation of Ẽ.

The previous lemma follows immediately from the definition of complex orientation.

Remark 3.4.8 (Base Change of Formal Group Laws via Base Change of Complex Orientation).
In the situation of Lemma 3.4.7, let F denote the graded A-equivariant formal group law asso-
ciated to the orientation x(ϵ) of E and let F̃ denote the graded A-equivariant formal group law

associated to the orientation h(x(ϵ)) of Ẽ. The homomorphism h induces a morphism F → F̃
of A-equivariant formal group laws. Base Change yields a unique morphism

πA
∗ Ẽ⊗̂πA

∗ EF → F̃ in A -FGLgr
k

under F ∈ A -FGLgr. This morphism is an isomorphism inA -FGL(gr) asA -FGL
(gr)
k is a groupoid.

3.5. Cohomology of Grassmannians and Thom Classes.

Convention 3.5.1. In this section Section 3.5, we generalize the computations of Cole, Kriz
and Greenlees [CGK02] to a fixed group

A = lim←−
n∈Nop

(
A0

ϕ1←− A1
ϕ2←− A2

ϕ3←− A3
ϕ4←− · · ·

)
where this inverse limit computed in topological groups and An is an abelian compact Lie group
for each n ≥ 0. The classifying spaces of A-equivariant d-dimensional complex vector bundles is
denoted by BA(U(d)) ∈ SA.

Proposition 3.5.2 (Homology of Grassmannians, [CGK02, 2.2.]). Let E be a complex orientable
A-spectrum and let d ≥ 1 be an integer. The composite of the Künneth map with the map induced
on E-homology by the map classifying the external sum of d-many A-equivariant line bundles

EA
∗
(
CP∞

A +

)⊗d Künneth−−−−−→ EA
∗
(
(CP∞

A )×d
+

) ⊕∗−−→ EA
∗ (BA(U(d))+) (73)
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induces an isomorphism

{EA
∗
(
CP∞

A +

)⊗d}Σd
→ EA

∗ (BA(U(d))+) (74)

of EA
∗ -modules from the Σd-coinvariants to the unreduced E-homology of BA(U(d)). In particu-

lar, EA
∗ (BUA+) is isomorphic to Sym

(
EA

∗
(
CP∞

A +

))
as a monoid in πA

∗ E-modules.

Proof. We choose a complex orientation x(ϵ) ∈ E2
A(CP∞

A ,CP(ϵ)) and write φn : A→ An for the
projection. Let us endow the An-spectrum

En := (φn)∗E ∈ SpAn

with the pushforward complex orientation (φn)∗(x(ϵ)) from Construction 3.3.2. The projection
formula, which holds by [BDS16b, Proposition 2.15.], defines an equivalence

En ⊗ BAn
(U(d))+

π−→ (φn)∗ (E ⊗ (φn)
∗ BAn

(U(d))+)

and applying πAn
∗ (−) on both sides yields an isomorphism

(En)
An
∗ (BAn

(U(d))+) ∼= EA
∗ ((φn)

∗ BAn
(U(d))+).

From the equivalence
colimn(φn)

∗ BAn(U(d))→ BA(U(d))

of Equation (27), we get an isomorphisms

colimn(En)
An
∗ (BAn(U(d))+) ∼= EA

∗ (BA(U(d))+).

An analogous construction provides an isomorphism colimn(En)
An
∗
(
(CP∞

An
)×d
+

) ∼= EA
∗

(
CP∞

A
×d
+

)
.

Moreover, taking the colimit of the homomorphisms

(En)
An
∗

(
CP∞

An+

)⊗d Künneth−−−−−→ EAn
∗
(
(CP∞

An
)×d
+

) ⊕∗−−→ EAn
∗ (BAn

(U(d))+)

gives Equation (73). So, it suffices to see that the homomorphism from (74) is an isomorphism
for each An, separately. This case is covered by [CGK02, Theorem 2.2.]. □

When we have chosen a complete flag of A, as in Definition 2.9.14, then we can be more
explicit:

Lemma 3.5.3. Let β(m) : E[2m]→ E ⊗ Σ∞
+ CP∞

A denote the composite

E[2m]
incl−−→

m⊕
i=0

E[2i]
≃−→ E ⊗ CP(Vm+1)+ → E ⊗ Σ∞

+ CP∞
A ,

where we choose an inverse of the equivalence of homotopy E-modules constructed before Propo-
sition 3.1.17. Then, the composite homotopy E-module map⊕

0≤i1≤i2≤···≤id

E[∗] β(i1)∧···∧β(id)−−−−−−−−−−→ E ⊗ Σ∞
+ (CP∞

A )
×d ⊕∗−−→ E ⊗ Σ∞

+ BA(U(d)) (75)

is an equivalence in SpA. Here, ∗ = 2(i1 + · · ·+ id).

Proof. We write ⊕∗(β(i1) ∧ · · · ∧ β(id)) ∈ EA
∗ (BA(U(d))+) for the image of β(i1) ⊗ · · · ⊗ β(id)

under the homomorphism (73). Because the homomorphism induced on co-invariants (74) is
an isomorphism, the map (75) is an isomorphism after applying π∗

A(−). For any B ≤ A with

A/B ∈ OrbA, the restriction ResAB(x(ϵ)) is a complex orientation of EB ∈ SpB , see Lemma 3.1.12.
Doing the previous construction for the restricted orientation and restricted complete flag yields
the classes ResAB (β(i1) ∧ · · · ∧ β(id)). We conclude that the map (75) is an isomorphism after
applying π∗

B(−), too. The functors π∗
B(−) are jointly conservative. Thus, the map of A-spectra

(75) is an equivalence, as claimed. □
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Corollary 3.5.4 (Cohomology of Grassmannians). The composite of the map classifying the
external sum of A-line bundles with the inverse of the Künneth map

E∗
A(BA(U(d))+)

⊕∗

−−→ E∗
A

(
(CP∞

A )×d
+

) (Künneth)−1

−−−−−−−−→ E∗
A

(
CP∞

A +

)⊗̂d

is an isomorphism onto its image {E∗
A

(
CP∞

A +

)⊗̂d}Σd , consisting of fixed points under the factor-
permutation action.

Proof. The equivalence in Equation (75) implies that the universal coefficient map

E∗
A(BA(U(d))+)→ HomE∗

A
(EA

∗ (BA(U(d))+), E
A
∗ )

is an isomorphism of E∗
A-algebras. Similarly, E ⊗ (CP∞

A )n+ is a free homotopy E-module, so the
universal coefficient map is an isomorphism for (CP∞

A )n, too. Therefore, the result follows from
the homological case stated in Proposition 3.5.2. □

To proceed with constructing Thom classes for complex vector bundles of dimension ≥ 2, we
study the following map: For α1 ∈ A∗, viewed as a unitary A-representation, we have a map

(α1 ⊕−) : BA(U(d))→ BA(U(d+ 1))

classifying the bundle α1 ⊕ γd. Consider the augmentation, θ(α1) : ∗ → CP∞
A , classifying α1, so

that the diagram

{EA
∗
(
CP∞

A +

)⊗̂d}Σd
{EA

∗
(
CP∞

A +

)⊗̂(d+1)}Σd+1

EA
∗ (BA(U(d))+) EA

∗ (BA(U(d+ 1))+)

{θ(α1)⊗̂(−)}Σd+1

∼= ∼=
(α1⊕(−))∗

commutes. If we extend α1 ∈ A∗ to a complete flag of A, then, in notation of Lemma 3.5.3, we
have θ(α1) = β(0) in E∗

A

(
CP∞

A +

)
. Therefore, the lower horizontal map of the above diagram,

(α1 ⊕ (−))∗, can be described on the basis of Lemma 3.5.3 by

⊕∗ (β(i1) ∧ · · · ∧ β(id)) 7→ ⊕∗ (β(0) ∧ β(i1) ∧ · · · ∧ β(id)) .

In particular, the homomorphism (α1 ⊕ (−))∗ is split injective.

Corollary 3.5.5. Let E be a complex orientable A-spectrum. For any 1-dimensional A-representation
α1 ∈ A∗, the cofiber sequence

BA(U(d− 1))+
α1⊕(−)−−−−−→ BA(U(d))+

s0−→ BA(U(d))hom(γd,α1) (76)

of based A-spaces induces a split short-exact sequence

0→ E∗
A(BA(U(d))hom(γd,α1))

s∗0−→ E∗
A(BA(U(d))+)

(α1⊕(−))∗−−−−−−−→ E∗
A(BA(U(d− 1))+)→ 0 (77)

on E-cohomology.

Proof. The map E∗
A(BA(U(d))+)

(α1⊕(−))∗−−−−−−−→ E∗
A(BA(U(d − 1))+) is dual to a split injection,

by the previous discussion. To obtain the cofiber sequence (76) we present three alternative
arguments: One can compute the quotient in the model, see [CGK02, Remark 4.4.]. One can
deduce the result from the compact Lie group case [CGK02, Remark 4.4.] via the passage to the
colimit along inflations, or one used global spaces as follows: Applying the left adjoint functor

(−)//U(d) : SU(d),∗ → Sgl,∗ to the cofiber sequence U(d)/U(d− 1)+ → S0 → SCd

yields a cofiber
sequence of pointed global spaces

BglU(d− 1)+ → BglU(d)+ → SCd

//U(d).
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In turn, applying the restriction functor ResA : Sgl,∗ → SA,∗ yields the cofiber sequence

BA(U(d− 1))+
(−)⊕ϵ−−−−→ BA(U(d))+

s0−→ BA(U(d))γd ≃ SCd

∧U(d) BA(U(d)).

The maps classifying tensoring with α1 provide an equivalence of this cofiber sequence of based
A-spaces with the diagram in Equation (76). □

Construction 3.5.6. Let E be a complex orientedA-spectrum. The class y(ϵ)×d ∈ E2d
A

(
(CP∞

A )×d
+

)
lifts to a unique class

tE(γd) ∈ E2d
A (BA(U(d))γd)

along the injection

E∗
A(BA(U(d))γd)

s∗0−→ E∗
A(BA(U(d))+)

⊕∗

−−→ E∗
A

(
(CP∞

A )×d
+

)
.

Indeed, this follows from the short exact sequence in Equation (77): Note that the diagram

EA
∗ (BA(U(d))+) EA

∗ (BA(U(d− 1))+)

{E∗
A

(
CP∞

A +

)⊗̂d}Σd {E∗
A

(
CP∞

A +

)⊗̂(d−1)}Σd−1

(ϵ⊕(−))∗

∼= ∼=

θ(ϵ)⊗̂E∗
A
(−)

commutes and the class y(ϵ) lies in the kernel of θ(ϵ) : E∗
A

(
CP∞

A +

)
→ E∗

A.

Definition 3.5.7. Let E be a complex oriented A-spectrum. For a d-dimensional A-equivariant
complex vector bundle classified by a map ξ : X → BA(U(d)) we define the Thom-class
tE(ξ) ∈ E2d

A (Xξ) as the pullback of tE(γd) along the Thomification of the classifying map
Xξ → BA(U(d))γd .

Note that for V = α1 ⊕ · · · ⊕ αd a bundle over a point with αi ∈ A∗, the class

tE(V ) = tE(α1) ∧ · · · ∧ tE(αn) ∈ E2d
A (SV ) (78)

is an RO(A)-graded unit by Equation (53).

Lemma 3.5.8 (Thom Isomorphism). If E is a complex oriented A-spectrum and ξ an d-
dimensional complex A-equivariant vector bundle on a cofibrant A-space X, then the Thom
homomorphism

E ⊗Xξ E⊗∆−−−→ E ⊗Xξ ∧X+
tE(ξ)∧X−−−−−−→ E ⊗ S2d ⊗X+ (79)

is an equivalence in SpA. Here, the Thom diagonal ∆ is the Thomification of the bundle map
ξ → ξ × 0. This induces the Thom isomorphism

E∗−2d
A (X+)

tE(ξ)∧(−)−−−−−−→ E∗
A(X

ξ ∧X+)
∆∗

−−→ E∗
A(X

ξ)

in E-cohomology.

Proof. The Thom isomorphism in E-cohomology follows from the spectral Thom isomorphism
in Equation (79) because the spectral Thom isomorphism is homotopy E-linear and

En
A(−) = [−, E ⊗ Sn]A ∼= [E ⊗ (−), E ⊗ Sn]AE−linear.

Via passage to homotopy colimits, we may assume that X is an orbit A/B of a subgroup B ≤
A with B ∈ Lie(A). In this case, the classifying map ξ : X → BA(U(d)) is adjoint to a
classifying map V : ∗ → BB(U(d)) of a unitary B-representation V , under the restriction-
induction adjunction. By Lemma 3.1.12, the orientation of E restricts to an orientation of
EB := ResAB(E). By the previous discussion, the Thom class tEB (V ) ∈ E2d

B (SV ) of V is an
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RO(B)-graded unit. By the left projection formula, a.k.a. the shearing isomorphism, the Thom
homomorphism for ξ identifies with

IndBA

(
EB ⊗ SV E∧tEB (V )−−−−−−−→

≃
EB ⊗ S2d

)
,

using that tEB (V ) : SV → EB is adjoint to tE(ξ) : IndAB(S
V )→ E. □

Corollary 3.5.9. Let E be a complex oriented A-spectrum. Then, the map EA → ΦA(E) of
homotopy ring spectra is a localization at the set of Euler classes {eα ∈ π−2(E

A) : α ∈ A∗ \{ϵ}}.

Proof. By Corollary 2.6.27, the map EA → ΦA(E) is equivalent to the component inclusion

EA → colimV⊆U⊥
A
(SV ⊗ E)A,

where UA denotes a complete complex A-universe, see Remark 2.6.26. For any complex A-
representation V , the Thom isomorphism defines an equivalence

tE(V ) · (−) : SV ⊗ E
≃−→ SdimR(V ) ⊗ E.

If V = W ⊕ α for α ⊆ U⊥
A one-dimensional, then the stabilization map SW ⊗ E → SV ⊗ E

corresponds to multiplication by the Euler class

eα · (−) : Sdim(W ) ⊗ E → S2 ⊗ SdimR(W ) ⊗ E

under the Thom isomorphism. Hence, EA → ΦA(E) is homotopic to the telescoping localization
of EA at the Euler classes eα for α ∈ A∗ \ {ϵ}. □

3.6. Topological Universality of Complex Bordism.

Theorem 3.6.1. Let E be a complex oriented A-spectrum. Then there exists a unique homo-
topy ring homomorphism MUA → E that sends the complex orientation of MUA from Exam-
ple 3.1.10 to the complex orientation of E.

Phrased differently, the functor CAlg(h(SpA)) → Set sending a commutative homotopy ring
spectrum E to the set of complex orientations of E is co-represented by the complex bordism spec-
trum MUA together with the universal complex orienation xMU(ϵ) ∈MU2

A(CP∞
A ,CP(ϵ)). The

universal complex orientation is uniquely determined by the Thom class tMU(γ1) ∈MU2
A(CP∞

A )γ1

of the universal complex line bundle constructed in Example 3.1.10.

Proof. Let {Vn} be a complete flag for A. Then, the transition maps of the telescoping formula
for MUA from Corollary 2.9.18 correspond under the Thom isomorphism in E-cohomology to
the split surjections from Corollary 3.5.5. Thus, precomposition by the maps

tMU(γn) · (tMU(Vn))
−1 (50)

=
tUd

tU (Vn)
: Σ∞ BA(U(d))γd ⊗ S−Vn →MUA

induce a bijection

[MUA, E]A
∼=−−→ lim←−

n

[Σ∞ BA(U(n))γn ⊗ S−Vn , E]A, (80)

because of lim1-vanishing by surjectivity of the transition maps.
If f : MUA → E is orientation preserving, then the coordinate yMU(ϵ) is sent to yE(ϵ). If f is

moreover homotopy multiplicative, then f∗(y(ϵ)
×d) = y(ϵ)×d and therefore f∗(t

MU(γd)) = tE(γd)
by Construction 3.5.6. Hence, if f is additionally homotopy unital, then f sends tMU(γn) ·
(tMU(Vn))

−1 to tE(γn) · (tE(Vn))
−1. By Equation (80), the images of tMU(γn) · (tMU(Vn))

−1

running through all n ∈ N0 already uniquely determine f . This establishes uniqueness.



FORMAL GROUP LAWS AND STABLE HOMOTOPY THEORY OVER PROFINITE ABELIAN GROUPS 65

For existence, we prove that the unique morphism of spectra f : MUA → E sending the prod-
uct tMU(γn)·(tMU(Vn))

−1 to the product tE(γn)·(tγn(Vn))
−1 for all n ∈ N0 is an orientation pre-

serving homotopy ring morphism. The morphism f is homotopy unital, by its defining condition
for n = 0. To see that f is homotopy multiplicative, we investigate the set [MUA⊗MUA, E]G.
To this end, we write MUA⊗MUA as an N0-indexed colimit by using our flag on both tensor
factors and restricting the N0 × N0-indexed colimit along the diagonal. To check that the tran-
sition maps of this colimit induce surjections in E-cohomology we apply the Thom isomorphism
and the Künneth formula in E-cohomology18 to reduce to surjectivity of the split surjection from
Corollary 3.5.5. By lim1-vanishing, we conclude that a map [MUA⊗MUA, E]G is uniquely de-
termined by where binary products of the classes tMU(γn) · (tMU(Vn))

−1 are sent. As the Thom
classes are multiplicative with respect to direct sums of bundles in both MUA cohomology, as
well as E-cohomology, we conclude that f is homotopy multiplicative. Now, it follows from the
defining property of f that tMU(γn) is sent to tE(γn). In particular, f is orientation preserv-
ing. □

3.6.1. Homology of the Complex Bordism Spectrum. For a compact abelian Lie group A, the first
computation of the oriented homology of the A-equivariant bordism spectrum MUA appeared
in work of Cole, Greenlees and Kriz [CGK02]. This computation contained an inaccuracy which
was fixed in Julius Groenjes’ Master thesis [Gro24].

Proposition 3.6.2. Let E be a complex orientable A-spectrum. Then, the Thom isomorphism
EA

∗ (CP∞
A ) ≃ EA

∗ ((CP∞
A )γ1 ⊗ S−2) together with the canonical A-map (CP∞

A )γ1 ⊗ S−2 → MUA

induce an graded E∗-algebra isomorphism{
Sym∗

(
EA

∗ (CP∞
A )
)
/(1− ϑ(ϵ))

}
[ϑ(α)−1 : α ∈ A∗]

∼=−−→ EA
∗ (MUA).

Here, ϑ(α) is the image of the unit under E∗(∗
α−→ CP∞

A )+.

Proof. We choose a complete flag {Vn} for A with V1 = ϵ the trivial representation. Using this
flag, we write MUA as telescoping colimit as in Corollary 2.9.18. Via the Thom isomorphism,
the E-homology of the n-th term of the telescope identifies with

EA
∗ (BA(U(n))+)

(74)−−→∼= {EA
∗
(
CP∞

A +

)⊗n}Σn .

Under this identification, the n-th stabilization map in the E-homology of the telescope comput-
ing EA

∗ (MUA) identifies with ϑ(αn)⊗ (−) for αn ∈ A∗ the orthogonal complement Vn − Vn−1.
Now, the result follows from the standard description of the symmetric algebra and the telescop-
ing formula for inversion of elements, because for each α ∈ A∗ there are infinitely many n ∈ N
with α = αn. □

3.7. Equivariant Quillen’s Theorem. In analogy to Quillen’s computation [Qui69] of π∗ MU
it has long been conjectured, see [CGK00], that the homotopy groups of A-equivariant complex
bordism coincide with the A-equivariant Lazard ring. This conjecture was resolved for compact
abelian Lie groups by Markus Hausmann [Hau22].

Theorem 3.7.1. Let A be a compactly metrizable abelian group. The graded ring homomorphism
k : LA → πA

∗ (MUA) classifying the graded A-equivariant formal group law associated to the
universal complex orientation is an isomorphism.

Proof. We choose surjective morphisms φn : A → An of topological groups exhibiting A ∼=
lim←−n

An as inverse limit of compact abelian Lie groups An. By Theorem 3.4.5, the graded ring

18The Künneth formula holds for E-cohomology of products of BA(U(d))’s by Equation (56)
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homomorphisms LAn → LA classifying the co-restriction of the universal A-equivariant formal
group law induce an isomorphism colimLAn

→ LA. The composite morphism

LAn
→ LA

k−→ πA
∗ (MUA) (81)

classifies the co-restricted An-equivariant formal group law. The statement under consideration
is known in the case of compact Lie groups, see [Hau22]. Hence, the map LAn → πAn

∗ (MUAn)
classifying the formal group law associated to the universal complex orientation of MUAn

is an
isomorphism. The composite graded ring map

LAn

∼=−−→ πAn
∗ (MUAn

)→ πAn
∗ ((φn)∗(MUA)) ≃ πA

∗ (MUA) (82)

classifies the formal group law associated to the pushforward complex orientation of (φn)∗(MUA),
because the canonical homotopy ring mapMUAn → (φn)∗ MUA is orientation preserving. Thus,
by Remark 3.3.7, the two maps LAn

→ πA
∗ (MUA) from Equation (81) and Equation (82) agree.

By Construction 2.9.6, the composite graded ring maps

πAn
∗ (MUAn

)→ πAn
∗ ((φn)∗(MUA)) ≃ πA

∗ (MUA)

induce a graded ring isomorphism colimn π
An
∗ (MUAn

)→ πA
∗ (MUA). So, the composite graded

ring homomorphisms

LAn
→ LA

k−→ πA
∗ (MUA)

induce a graded ring isomorphism colimn LAn

∼=−→ πA
∗ (MUA), which factors as

colimn LAn → LA
k−→ πA

∗ (MUA).

Because colimn LAn → LA is an isomorphism, the homomorphism k : LA → πA
∗ (MUA) is an

isomorphism, as well. □

4. Factorization of the HKR-Character Map

Recall that for any compactly metrizable abelian group A, we constructed a symmetric
monoidal restriction functor ResA : Spgl → SpA and similarly in the unstable set up. The under-
lying spectrum functor Rese : Spgl → Sp admits a lax monoidal right adjoint (−)b : Sp → Spgl.
If E is a complex oriented spectrum, then the Borel spectrum EbA := ResA(E

b) is a complex
orientable A-spectrum, see Section 4.2.

For any compact Lie group G, the functor ResG : Spgl → SpG admits a left adjoint (−)//G,
such that Rese (X //G) ≃ XhG computes the homotopy orbits of X ∈ SpG.

In a stable category we denote by [−,−]∗ the negatively graded homotopy groups of the
mapping spectrum, i.e.

[Σ∞
+ X,E]∗ := π−∗ mapSp(Σ

∞
+ X,E) =: E∗(X),

where X is a space. In this Section 4, the expression E∗(X) is our notation for unreduced
E-cohomology, whenever E ∈ Sp.

Our main agenda of this section is interpreting/recalling all expressions appearing in the
HKR-character map from [HKR00]. Afterwards, we prove the following factorization of the
HKR-character map:

Theorem 4.0.1. Let E be a p-local height n Lubin-Tate spectrum19 and X ∈ SG a compact
G-space, where G is a finite group. Let the topological group Zn

p denote the n-fold product of the

19Slightly more generally, E can be chosen to be any homotopy ring spectrum for which the HKR-character
map was originally defined for in [HKR00]
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p-adic integers. Then, the HKR-character map from [HKR00] makes the diagram

E∗(XhG) L∗(E)⊗E∗ E∗(FixZn
p
(G,X)hG)

[Σ∞
+ XhG, E]∗ [Σ∞

+ FixZn
p
(G,X)hG,Φ

Zn
p (EbZn

p )]∗

[Σ∞
+ X//G, E

b]∗ [ResZn
p
Σ∞

+ X//G, E
bZn

p ]∗ [ΦZn
p (ResZn

p
(Σ∞

+ X//G)),Φ
Zn
p (EbZn

p )]∗

HKR

∼=∼=

∼=
ResZnp Φ

Znp

∼=

commute. While the left vertical isomorphisms follow from adjunction, the lower right vertical
isomorphism is induced by the Zn

p -fixed-point-G-orbit interchange map

I : FixZn
p
(G,X)hG

≃−→ MapPro(Sgl)
(BglZn

p , X//G)
2.7.5−−−→
≃

(ResZn
p
(X//G))

Zn
p

from Proposition 4.1.7. In Section 4.3, we provide a preferred graded E∗-algebra isomorphism

Φ
Zn
p

−∗(E
bZn

p ) ∼= L(E∗), (83)

where L(E∗) is the rational E∗-algebra from [HKR00]. The upper right vertical map in the

diagram is induced by the ring map E → ΦZn
p (EbZn

p ). It is an isomorphism, because L(E∗) is
flat over E∗.

Remark 4.0.2. Because L(E∗) is rational, see [HKR00, Proposition 6.5.], we have a preferred
equivalence

L(E∗)⊗E∗ E∗(FixZn
p
(G,X)hG) ∼= L(E∗)⊗E∗

(
E∗
(
FixZn

p
(G,X)

))G
.

As Hopkins, Kuhn and Ravenel show in [HKR00], the HKR-character map induces an isomor-
phism

L(E∗)⊗E∗ E∗(XhG)
HKR−−−→ L(E∗)⊗E∗

(
E∗
(
FixZn

p
(X,G)

))G
after base-change. The left hand side is already interesting when X is a point (so that XhG ≃
BG), while the right hand side FixZn

p
(∗, G) = homGrp(Zn

p , G) becomes algebraic, in that case.

4.1. Formal Loop Spaces.

Definition 4.1.1. Let A be a profinite abelian group and A∗ its Pontryagin dual. Let X ∈ Sgl
be a global space. Lurie [Lur19, Construction 3.4.3.] defines the formal loop space as the colimit
of internal Hom-spaces

LA∗
(X) := colim

Λ⊆A∗
HomSgl

(BglΛ
∗
0, X).

In particular, if surjective morphisms A→ An exhibit the topological group A as an Nop-indexed
limit of finite abelian groups An, then

LA∗
(X) ≃ colim

n∈N
HomSgl

(BglAn, X).

Observation 4.1.2. In the situation of Definition 4.1.1, we have a preferred equivalence

Rese

(
LA∗

(X)
)
≃ colim

n∈N
MapSgl

(BglAn, X) = MapPro(Sgl)
(BglA,X)

2.7.5−−−→
≃

(ResA(X))A (84)

of spaces.
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Definition 4.1.3. Let A be a profinite abelian group. Let G be a finite group and X ∈ SG a
G-space. From [HKR00] we recall the following G-space

FixA(G,X) :=
⊔

α∈homGrp(A,G)

XIm(α).

where g ∈ G acts via g · xα = (gx)cg◦α. Here cg : G→ G denotes conjugation by g.

The following discussion maybe thought of as a variant of [Rez14, Section 3.2. and 3.3.].

Construction 4.1.4. Let A be a metrizable profinite abelian group and G a finite group. We
construct an A-fixed-point-G-orbit interchange map

I : FixA(G,X)hG → MapPro(Sgl)
(BglA,X//G) (85)

naturally in the G-space X.
First, we assume that A is a finite abelian group. We write C(α) for the largest subgroup of

G whose center contains the image of a homomorphism α : A → G. Observe that we have an
equivalence of G-spaces⊔

[α]∈homGrp(A,G)/G

G×C(α) X
Im(α) → FixA(G,X), [g, x] 7→ (gx)cg◦α,

inducing an equivalence ⊔
[α]∈homGrp(A,G)/G

(XIm(α))hC(α) → FixA(G,X)hG (86)

of spaces.
Consider the group homomorphism

i× α : C(α)×A→ G, (g, a) 7→ g · α(a),

and note that the map

XIm(α) → (i× α)∗X

is C(α)×A equivariant. Passing to global orbits yields a composite map of global spaces

(XIm(α))//C(α) × BglA→ ((i× α)∗X)//C(α)×A → X//G, (87)

where the second map comes from the lax limit structure of global spaces, see [LNP25, Theorem
6.17.]. For example, when X = ∗ is the point the composite in Equation (87) is just

Bgl(i× α) : BglC(α)× BglA→ BglG.

The adjoint of the composite in Equation (87) is given by

(XIm(α))//C(α) → HomSgl
(BglA,X//G). (88)

Applying the underlying spectrum functor Rese : Sgl → S to the previous map yields

(XIm(α))hC(α) → MapSgl
(BglA,X//G), (89)

which is the restriction of the interchange map I to the [α]-factor.
If surjective morphisms A → An exhibit the topological group A as an Nop-indexed inverse

limit A ∼= lim←−An of finite abelian groups An, we define the A-fixed-point-G-orbit interchange
map by I := colimn In. Here In denotes the An-fixed-points-G-orbits interchange map.
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Observation 4.1.5. In the situation of Construction 4.1.4, the composite

XIm(α) → (XIm(α))hC(α)
(89)−−→ MapSgl

(BglA,X//G)

sends a fixed point x to the composite

BglA
Bgl(α)−−−−→ Bgl Im(α)

x//G−−−→ X//G,

where the latter map is obtained from the G-map x : G/ Im(α)→ X representing the Im(α)-fixed
point x.

The A-fixed-point-G-orbit interchange map is compatible with inducing up the finite group
G:

Remark 4.1.6. Let A be a metrizable profinite abelian group. Let G be a finite group and
X ∈ SH an H-space for i : H → G the inclusion of a subgroup. We define an H-map

FixA(H,X)→ ResGH(FixA(G, IndGH(X)))

by

xα 7→ (eH ×H x)i◦α ∈ FixA(G, IndGH(X))

for α ∈ homGrp(A,H) and xα ∈ XIm(α). The adjoint G-map

IndGH(FixA(H,X)) −→ FixA(G, IndGH(X)) (90)

is an equivalence. Moreover, the diagram(
IndGH(FixA(H,X))

)
hG

MapPro(Sgl)
(BglA, IndGH(X)//G)

FixA(H,X)hH MapPro(Sgl)
(BglA,X//H)

I

≃ ≃

I

has a canonical filler.

Proposition 4.1.7. Let A be a metrizable profinite abelian group. Let G be a finite group and
X a G-space. Then, the A-fixed-point-G-orbit interchange map

FixA(G,X)hG
I−→ MapPro(Sgl)

(BglA,X//G)
2.7.5−−−→
≃

(ResA(X//G))
A

is an equivalence, “interchanging A-fixed points with G-orbits”.

Proof. By passage to colimits, it suffices to treat the case that A is a finite abelian group. Since
both the domain and codomain preserve colimits in the variable X, it is enough to treat the case
of orbits X = G/H. As the interchange map is compatible with induction (see Remark 4.1.6),
it further suffices to restrict to the case that X is the point. In other words, we need to prove
that the map

homGrp(A,G)→ MapSgl
(BglA,BglG), α 7→ Bgl(α)

induces an equivalence homGrp(A,G)hG → MapSgl
(BglA,BglG) on homotopy orbits. A proof of

this fact can be found in [Kö18, Proposition 2.5.]. □
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4.2. Orientations of Borel Spectra.

Construction 4.2.1 (Orientation of Borel Spectra). Let A be a compactly metrizable abelian
group. Let x(ϵ) ∈ E2(CP∞,CP(ϵ)) be a complex orientation of a commutative homotopy ring
spectrum E. If we choose as representative of the class x(ϵ)

x(ϵ) : Rese (Σ
∞BglU(1))→ E ⊗ S2,

then its adjoint Σ∞BglU(1)→ Eb ⊗ S2 restricts to a map

x(ϵ) : Σ∞CP∞
A → EbA ⊗ S2

of A-spectra. This represents a well-defined cohomology class x(ϵ) ∈ (EbA)2A(CP∞
A ,CP(ϵ)).

Lemma 4.2.2. In situation of Construction 4.2.1, the class x(ϵ) ∈ (EbA)2A(CP∞
A ,CP(ϵ)) is a

complex orientation of the Borel spectrum EbA.

Proof. Suppose surjective morphisms A→ An exhibit the topological group A as an Nop-indexed
inverse limit A ∼= lim←−n

An of abelian compact Lie groups An. Let α ∈ A∗ be a character. By

Theorem 2.1.4, we may choose n ∈ N such that α = InflAAn
(α). The map representing

Resα⊕ϵ(x(α)) ∈ (EbA)2A(CP(α⊕ ϵ),CP(ϵ))

factors through the homotopy ring homomorphism InflAAn
(EbAn ⊗ S2)→ EbA ⊗ S2 as follows:

Σ∞CP(α⊕ ϵ)→ InflAAn

(
Σ∞CP∞

An

)
→ InflAAn

(EbAn ⊗ S2)→ EbA ⊗ S2.

Since inflation preserves representation-graded units, we may assume that A is a compact abelian
Lie group.

As in Lemma 3.1.5, we identify CP(α ⊕ ϵ)/CP(ϵ) with the representation sphere Sα−1

. Via
the adjunction (−)hA ⊣ (−)bA, the Thom isomorphism in E-cohomology applied to the bundle
α−1 ×A EA over BA implies that multiplication by Resα⊕ϵ(x(α)) defines an isomorphism

[Σ∞Sα−1

, EbA]∗ → [Σ∞S2, EbA]∗.

Applying the same argument to any closed subgroup B ≤ A and the B-representation ResAB(α
−1)

shows that multiplication by Resα⊕ϵ(x(α)) induces an isomorphism

πB
∗ (EbA ⊗ Sα−1

) −→ πB
∗ (EbA ⊗ S2)

on B-fixed homotopy groups. Because the functors πB
∗ (−) are jointly conservative, the class x(ϵ)

satisfies Definition 3.1.4. □

4.2.1. Euler Classes of Borel Spectra. Let x(ϵ) ∈ E2(CP∞,CP(ϵ)) be a complex orientation of
a commutative homotopy ring spectrum and y(ϵ) ∈ E2(CP∞) the associated coordinate. For
any character α ∈ A∗ of a compactly metrizable abelian group A, the Euler class eα ∈ πA

∗ (E
bA)

associated to the complex orientation of the Borel A-spectrum EbA is equal to the following
construction:

Suppose surjective morphisms A→ An exhibit A as an Nop-indexed inverse limit A ∼= lim←−n
An

of compact abelian Lie groups. By Theorem 2.1.4, we may choose an n ∈ Nop such that α =
InflAAn

(α). By definition, the Euler class eα is the pullback of the coordinate associated to the

complex orientation of EbA,

y(ϵ) ∈ [Σ∞
+ CP∞

A , EbA]∗,

along the following composite map of A-spaces:

∗ α−→ InflAAn
CP∞

An
→ CP∞

A .
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Thus, the map representing the Euler class eα factors through the An-to-A inflation of the
coordinate y(ϵ) of the Borel An-spectrum EbAn :

Σ∞
+ ∗

α−→ Σ∞
+ InflAAn

CP∞
An

InflA
An

(y(ϵ))
−−−−−−−−→ InflAAn

(EbAn)⊗ S2 → EbA ⊗ S2.

The map of A-spectra

Σ∞
+ ∗

α−→ Σ∞ InflAAn
CP∞

An

InflA
An

(y(ϵ))
−−−−−−−−→ InflAAn

(EbAn)⊗ S2

is the An-to-A inflation of the map of An-spectra

Σ∞
+ ∗

α−→ Σ∞CP∞
An

y(ϵ)−−→ EbAn ⊗ S2.

Under the adjunction (−)hAn
⊣ (−)bAn the latter composite corresponds to the following com-

posite map of spectra

Σ∞
+ BAn

Bα−−→ Σ∞
+ CP∞ y(ϵ)−−→ E ⊗ S2.

Here, the map Bα : BAn → BU(1) = CP∞ is obtained by applying the classifying space functor
B(−) to the map α : An → U(1) of compact Lie groups.

In the current setup, for a topological group A ∼= lim←−n
An, and a complex orientation x(ϵ) of

a commutative homotopy ring spectrum E, we have proven the following Proposition:

Proposition 4.2.3 (Euler Classes of Oriented Borel Spectrum). Recall from Equation (45) that
the inflations induce a graded ring isomorphism

colim
n∈N

E−∗(BAn)→ πA
∗ (E

bA). (91)

For any character α ∈ A∗ there is n ∈ N such that α factors through An. Then, the Euler class
eα ∈ πA

−2(E
bA) lifts to the class c1(α) ∈ E2(BAn), where the Chern class c1(α) is defined as the

pullback of the coordinate y(ϵ) ∈ E2(CP∞) along

Bα : BAn → BU(1) = CP∞. (92)

Corollary 4.2.4 (Geometric Fixed Point of Oriented Borel Spectrum). Let x(ϵ) be a complex
orientation of a homotpy ring spectrum E and suppose surjective morphisms A→ An exhibit an
topological group A as inverse limit A ∼= lim←−n

An of abelian compact Lie groups An. Then, the
composite

colim
n∈N

E−∗(BAn)→ πA
∗ (E

bA)→ Φ∗
A(E

bA)

exhibits Φ∗
A(E

bA) as the localization at the set

S := {c1(α) ∈ E2(BAn) | n ∈ N, α ∈ A∗
n \ {ϵ}}

of Chern classes. Here y(ϵ) ∈ E2(CP∞) is the coordinate, which is obtained from the orientation
x(ϵ) by forgetting the base point.

Proof. By Corollary 3.5.9, the map πA
∗ (E

bA)→ Φ∗
A(E

bA) is a localization at the following set of
Euler classes

{eα ∈ E2
A | α ∈ A∗ \ {ϵ}}

associated to the complex orientation of the Borel spectrum EbA. The result follows from Propo-
sition 4.2.3. □
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4.3. The E∗-algebra L∗(E). In the following, we switch to the setup of Theorem 4.0.1, i.e. E
is a p-local height n Lubin-Tate theory.

Notation 4.3.1. To simplify our notation we write Λ := Zn
p and Λr := (Z/prZ)n.

Corollary 4.2.4 provides a preferred E∗-algebra isomorphism

L−∗(E) := S−1

(
colim
r∈N

E−∗(BΛr)

)
−→ ΦΛ

∗ (E
bΛ) (93)

from the algebra L∗(E), defined in [HKR00], to the geometric fixed points of the Borel theory
EbΛ ∈ CAlg(SpΛ). Here, the set S is defined as the set of first Chern classes

S :=
{
c1(α) ∈ E2(BΛr) | r ∈ N, α ∈ Λ∗

r , α ̸= ϵ
}
.

Remark 4.3.2. By [HKR00, Corollary 6.8.], the algebra L∗(E) is rational and faithfully flat
over p−1E∗.

Remark 4.3.3. To the given formal group over π∗(E) we associate a graded p-divisible group
Fp∞ , by taking p-power-torsion points. The group of pr-torsion points is given by Spec(E∗(BZ/pr)).
The functor that associates to an E∗-algebra R the set of isomorphisms from the base change
R⊗E∗ Fp∞ to the constant p-divisible group Qn

p/Zn
p is represented by L∗(E), see [HKR00, Corol-

lary 6.8.].

4.4. Proof of the Factorization. We are now in good shape to prove Theorem 4.0.1.

Notation 4.4.1. To simplify our notation we write Λ := Zn
p and Λr := (Z/prZ)n for r ∈ N.

Moreover, we suppress the notation of suspensions Σ∞
+ , in the non-equivariant, global, and Λr-

equivariant setup.

Proof of Theorem 4.0.1. The diagram in Theorem 4.0.1 is compatible with Mayer Vietoris se-
quences and inductions along inclusions of finite groups IndGH , see [HKR00, Section 6.4.]. Thus,
we may assume that X = ∗ ∈ SG is the terminal G-space.

In the case that X = ∗ ∈ SG is the terminal G-space, the HKR-character map

E∗(BG)
HKR−−−→ ΦΛ

−∗(E
bΛ)⊗E∗ E∗(homGrp(Λ, G)hG)

≃
∏

[α]∈homGrp(Λ,G)/G

ΦΛ
−∗(E

bΛ)⊗E∗ E∗(BC(α))

is defined as follows:
To specify the HKR-character map on the factor of the conjugacy class of a homomorphism

α : Λ→ G, we choose r ∈ N such that α factors through α : Λr → G. The group homomorphism

α× i : Λr × C(α)→ G, (a, g) 7→ α(a) · g

induce a map

B(α× i) : BΛr × BC(α)→ BG

of spaces. Then, the [α]-factor of the HKR-character map is given by the composite

E∗(BG)
B(α×i)∗−−−−−→ E∗(BΛr × BC(α))

Künneth−−−−−→∼=
E∗(BΛr)⊗E∗ E∗(BC(α))

→ ΦΛ
−∗(E

bΛ)⊗E∗ E∗(BC(α)). (94)

Indeed, this is explained in [Sta13a, Example 4.1.7.].
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Let us discuss the other composite in our Diagram 4.0.1

[BG,E]∗ −→ [FixΛ(G, ∗)hG,ΦΛ(EbΛ)]∗ ∼=
∏

[α]∈homGrp(Λ,G)/G

[BC(α),ΦΛ(EbΛ)]∗

base-change−1

−−−−−−−−−→
∏

[α]∈homGrp(Λ,G)/G

ΦΛ
−∗(E

bΛ)⊗E∗ [BC(α), E]∗

which we claim to be equal to the HKR character map. We again discuss the factor corresponding
to the conjugacy class of a group homomorphism α : Λr → G for some r ∈ N. By construction of
the restriction functor ResΛ : Spgl → SΛ “as a colimit”, the [α]-factor of the previous composite
factors as

[BG,E]∗ ≃ [BglG,Eb]∗
ResΛr−−−−→ [BΛr

(G), EbΛr ]∗
ΦΛr

−−−→ [(BΛr
(G))Λr ,ΦΛr (EbΛr )]∗

[α]∗−−→ [BC(α),ΦΛ(EbΛ)]∗. (95)

Here we used that applying geometric fix points is compatible with colimits and inflations.
Consider the “Λr-equivariant G-principle bundle” ᾱ : InflΛr

1 BC(α)→ BΛr (G), defined as the
adjoint of the component inclusion

[α] : BC(α)→ (BΛr (G))Λr ≃ MapSgl
(BglΛr,BglG) (96)

at the conjugacy class of α. Recall that ΦΛr (EbΛr ) identifies with the categorical Λr-fixed points
of the localization S−1

r EbΛr of the Borel spectrum EbΛr at the set of Euler classes

Sr = {eβ ∈ πΛr
−2(E

bΛr ) : β ∈ Λ∗
r \ {ϵ}}.

The previous composite in Equation (95) factors as

[BG,E]∗ ≃ [BglG,Eb]∗
ResΛr−−−−→ [BΛr (G), EbΛr ]∗ → [BΛr (G), S−1

r EbΛr ]∗

ᾱ∗

−−→ [InflΛr
1 BC(α), S−1

r EbΛr ] ∼= [BC(α),ΦΛ(EbΛ)]∗.

Now, we can invert the order of precomposition and postcomposition, to see that the composite
in Equation (95) is homotopic to the following composite

[BG,E]∗ ≃ [BglG,Eb]∗
ResΛr−−−−→ [BΛr

(G), EbΛr ]∗
ᾱ∗

−−→ [InflΛr
1 BC(α), EbΛr ]∗

→ [InflΛr
1 BC(α), S−1

r EbΛr ] ∼= [BC(α),ΦΛ(EbΛ)]∗.

The adjunction (−)hΛr
⊣ (−)bΛr provides an isomorphism

[BΛr × BC(α), E]∗ ∼= [InflΛr
1 BC(α), EbΛr ]∗

and to conclude the proof it suffices to show the following two claims:
The first claim is that the composite

[BG,E]∗ ∼= [BglG,Eb]∗
ResΛr−−−−→ [BΛr (G), EbΛr ]∗

ᾱ∗

−−→ [InflΛr
1 BC(α), EbΛr ]∗ ∼= [BΛr × BC(α), E]∗ (97)

agrees with precomposition along B(α× i). The second claim is that the composite

[BΛr × BC(α), E]∗ ∼= [InflΛr
1 BC(α), EbΛr ]∗ → [InflΛr

1 BC(α), S−1
r EbΛr ]∗ ∼= [BC(α),ΦΛr (EbΛr )]∗
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makes the diagram

[ BΛr × BC(α), E]∗ [BC(α),ΦΛr (EbΛr )]∗

[BΛr, E]⊗E∗ [BC(α), E]∗ ΦΛr
−∗(E

bΛR)⊗E∗ [BC(α), E]∗

Künneth base-change

commute.
To prove the second claim, we choose a morphisms of spectra f : BΛr → E[k] and g : BC(α)→

E[k′] for integers k, k′ ∈ Z. Suppressing the notations of these shifts, it is sufficient to show that
the diagram

BC(α)
(
(BΛr × BC(α))bΛr

)Λr
(
EbΛr

)Λr

E ⊗ EBΛr EBΛr ⊗ EBΛr EBΛr

unitΛr

f⊗g

(fbΛr ·gbΛr )Λr

≃

mult

commutes, up to homotopy. This is indeed the case because the multiplication of the Borel
spectrum EbΛr is induced by the multiplication of E under the adjunction (−)hΛr ⊣ (−)bΛr .

To prove the first claim, we express both adjunction isomorphism in Equation (97) via co-
unit and units. Doing this carefully, we conclude that it is sufficient to show that the following
diagram of spaces

BC(α)× BΛr BG

(BΛr
(G))hΛr

((BG)bΛr )hΛr

B(i×α)

ᾱhΛr

(ResΛr (u))hΛr

counit

commutes. Here, and in what follows, u shall denote the unit of the adjunction Rese(−) ⊣ (−)b
between spaces and global spaces.

We define a map of global spaces B̃(i× α) as the composite

const(BC(α))× BglΛr
counit×BglΛr−−−−−−−−−→ BglC(α)× Λr

Bgl(i×α)−−−−−−→ BglG,

employing the counit of the adjunction const ⊣ Rese(−). Since const : S → Spgl is fully faithful,

the map Rese(B̃(i× α)) identifies with B(i× α) : BC(α)×BΛr → BG. We conclude that under
the adjunction Rese(−) ⊣ (−)b the adjoint morphism to the composite

const(BC(α))× BglΛr
B(i×α)−−−−−→ BglG

u−→ (BG)b

is given by B(i× α).
On top of that, the outer square of the following diagram

const(BC(α))× BglΛr BglG BGb

(BΛr
(G))//Λr

ResΛr
(BGb)//Λr

B̃(i×a)

ᾱ//Λr

u

counit

ResΛr (u)//Λr

counit

corresponds, under the adjunction Rese(−) ⊣ (−)b, to the previous diagram. Hence, it suffices
to show that the latter diagram commutes.
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The right-hand part commutes by naturality of the counit of the adjunction (−)//Λr
⊣ ResΛ.

Hence, it is enough to prove that the upper-left triangle commutes. Under the adjunction

(−)//Λr
◦ InflΛ

r

1 : S ⇄ Sgl : mapSgl
(BglΛr,−)

the composite map

counit ◦ ᾱ//Λr
: const(BC(α))× BglΛr → BglG

of global spaces is adjoint to the map [α] : BC(α)→ mapSgl
(BglΛr,BglG) of spaces.

By construction of [α] : BC(α)→ mapSgl
(BglΛr,BglG), the morphism

α̃ : BglC(α)→ HomSgl
(BglΛr,BglG),

defined as the adjoint morphism of Bgl(i × α) : BglC(α) × Λr → BglG, satisfies Rese(α̃) ≃ [α].
We conclude that under the adjunction const(−) ⊣ Rese the composite

const(BC(α))
counit−−−−→ BglC(α)

α̃−→ HomSgl
(BglΛr,BglG)

corresponds to [α]. Consequently, under the adjunction

((−)× BglΛr) ◦ const(−) : S ⇄ Sgl : Rese ◦HomSgl
(BglΛr,−)

the morphism [α] corresponds to B̃(i× α).

To provide a homotopy between the map B̃(i × α) and the composite map counit ◦ ᾱ//Λr
, it

suffices to provide a homotopy between the two composite functors

(−)//Λr
◦ InflΛ

r

1 and ((−)× BglΛr) ◦ const(−),

because then the two maps are adjoint morphisms to [α] under homotopic functors. Each of
these two composite functors preserves small colimits and sends the point to BglΛr. □
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