SETUP OF MOTIVIC HOMOTOPY THEORY
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1. INTRODUCTION

Motivic homotopy theory aims to be to algebraic varieties what homotopy theory is to man-
ifolds. The interaction between motivic and “ordinary” stable homotopy theory has proven to
be remarkably fruitful, offering new tools to compute the homotopy groups of spheres.

In this first talk, we introduce the main objects of interest—spaces, spheres, stable stems,
homotopy sheaves, and Thom spaces/spectra—in the world of motivic homotopy theory.

2. DEFINITION OF THE MOTIVIC CATEGORIES

What we morally want to do is take the category of schemes and make the affine line A!
contractible. In other words, we would like to universally (and homotopy coherently) invert the
projection

XxA — X
for all (sufficiently nice) schemes X.

However, the category of schemes does not admit all small colimits, so there is no controlled
way to universally invert a collection of morphisms within this category. To address this, we
replace the category of schemes with a sheaf category on finitely presented smooth schemes.

For this construction, we want a subcanonical Grothendieck topology on finitely presented
smooth schemes. By analogy to homotopy theory we moreover would like a topology where
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a presheaf satisfies descent if and only it satisfies some sort of excision property-that is, sends
excisable squares to pullback squares. A basic example of such a topology is the Zariski topology.

Unfortunately, for the applications we have in mind,' the Zariski topology admits too few
covers®. We would prefer a topology that behaves more like the Euclidean topology—that is, one
with finer coverings. The étale topology fits this intuition, but it is not generated by an excision
property and suffers from certain drawbacks (such as infinite homotopical dimension and failure
of descent for algebraic K-theory).

Instead, we will work with the Nisnevich topology, which lies between the Zariski and étale
topologies.

Since we aim to obtain homotopy-invariant notions, our sheaves will take values in the oco-
category of spaces Spc. Throughout this seminar, we will use the language of oco-categories,
which we will simply refer to as categories from now on.

2.1. The Nisnevich Topology. Let S be a scheme. To keep the discussion simple, we as-
sume that S is quasi-compact, quasi-separated, Noetherian, and of finite Krull dimension. The
Noetherian and finite-dimensional assumptions are not strictly necessary, but dropping them re-
quires some technical adjustments in the definitions that follow. The overall theory (and proofs)
remains essentially the same.

Recall that a morphism of finite type f: X — S is smooth if and only if it is flat and the
relative cotangent sheaf Qx /g is locally free of rank equal to the relative dimension of X/S.

Definition 2.1.1. We denote by Smg the category of smooth S-schemes of finite type. For
morphisms we allow all morphisms of S-schemes.

The category Smg is small and admits finite limits.

A morphism of schemes X — Y is called étale if it is smooth of relative dimension 0.

An étale cover {p;: U; — X} is a family of étale morphisms that are jointly surjective on the
underlying Zariski spectra. In other words, for every field k and every k-point z: Spec(k) — X,
there exists (possibly after a finite field extension) a lift of  to some U;:

A Nisnevich cover {p;: U; — X} is a family of étale morphisms such that for every field k and
every k-point x: Spec(k) — X, there exists a lift of x to some U; without extending the residue

field:
Uy ——mmm X

e ]
Spec(k)
Hence, every Nisnevich cover is an étale cover.
A Zariski cover {p;: U; — X} is a jointly surjective family of open immersions. Since open
immersions induce isomorphisms on residue fields, every Zariski cover is a Nisnevich cover.
To construct an étale cover that is not Nisnevich, consider a nontrivial separable field exten-
sion, for instance
Spec(C) — Spec(R).

Fact. Admitting étale descent is equivalent to satisfying both Nisnevich descent and finite étale
descent (i.e., descent for finite étale covers).

IFor instance, homotopical purity does not hold for the Zariski topology.
2And therefore Sch — Sh%%* (Sch) preserves to few colimits
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A presheaf F': Sm¢® — Spc satisfies Nisnevich descent if and only if it satisfies Nisnevich
excision in the following sense.

Definition 2.1.2. A pullback square in Smg

We—" v
| P
Ue—"5 X
is called a Nisnevich square if

e j is an open immersion,

e p is étale, and

e the induced morphism

p I (X -U)— (X -U)
is an isomorphism, i.e. in the equivalent pullback diagram

X -U)———— >V

! !

X-U———X

reduced
the left vertical map is an isomorphism.
Remark 2.1.3. Here (X —U) — X denotes the unique reduced closed immersion whose image is
the complement of i(U). Then p~*(X — U) < V is the corresponding reduced closed immersion
whose image is the preimage of the set |X| — |[U| under the set map |p|. Because W — V is
an open immersion with image |p|~1(|U]), we see that p~1(X — U) < V is the unique closed
immersion with image the set |V| — |[W|. Thus, assuming p is étale and ¢ is an open immersion,
the square above is Nisnevich precisely when
p: (V - W)red — (X - U)red
is an isomorphism.

Lemma 2.1.4. If i: U — X and p: V — X form a Nisnevich square, then {i,p} is a Nisnevich
cover of X.

Proof. Let x € X. If x € U, then z lifts along i. Otherwise, x € X — U, and by definition of a
Nisnevich square, z lifts along p. (I

In fact, the Nisnevich topology is generated by Nisnevich squares in the sense of cd-structures.
We record the following key consequence without proof.

Theorem 2.1.5. Let F': Sm{’ — Spc be a presheaf on smooth finite type S-schemes. Then F'
is a sheaf for the Nisnevich topology if and only if:

o F(0) ~*, and
e for every Nisnevich square W = U X x V', the canonical map

F(X)— F(U) XF(W) F(V)
18 an equivalence.

It follows that the Yoneda embedding Smg — Sh™*(Smg) preserves the initial object and
sends Nisnevich squares to pushout squares.

Features of the Nisnevich topology.
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e If dim(S) = d, then the homotopical dimension of the topos Sh™'*(Smg) is at most d.
(This fails for the étale topology, where this dimension can be infinite.) In particular,
ShNis(Sms) is hypercomplete, and Postnikov towers converge.

e Because Nisnevich descent can be checked via Nisnevich excision, the subcategory of
Nisnevich sheaves is closed under filtered colimits in the presheaf category. (This is very
convenient in practice)

e The Nisnevich topology is subcanonical (since the fpqc topology—and hence the étale
topology—is already subcanonical). In light of Theorem Theorem 2.1.5, this means
that a Nisnevich square is already a pushout in Smg. Morally, the Yoneda embedding
Smg — ShNiS(SmS) preserves precisely those pushout squares that are Nisnevich—and
not many more.

2.2. Al-invariance.

Definition 2.2.1. A presheaf X: Smy’ — Spc is called Al-invariant if for every U € Smg, the
projection
UxpMN —U
is sent to an equivalence
X(U) = X (U x A").

By general principles (see [Lur09, 5.5.4]), the inclusion of Al-invariant presheaves into all
presheaves admits a left adjoint, denoted Lj1. We can describe this left adjoint more concretely.

Definition 2.2.2. The standard cosimplicial scheme is the functor
A®: A — Smg, [n] — A% C AR,
where A’ is the closed subscheme cut out by the equation
To+ 4T, =1,
and the structure maps are induced by partial projections and face inclusions.
Note that A% = A% for all n > 0.
Theorem 2.2.3. Let F' € P(Smg) be a presheaf. Then there is a unique equivalence under F'
Lyt F' = colimpyjcpaor F((—) x AZ). (1)
An important consequence of Equation (1) is that the functor La: preserves finite products.
Definition 2.2.4. A motivic space is an Al-invariant Nisnevich sheaf
F: Smy — Spe.
The category of motivic spaces is denoted
Spe(S) € P(Sms).

Lemma 2.2.5. The inclusion Spc(S) C P(Smg) preserves filtered colimits and admits a left
adjoint Lyiot, whose unit is given by

id — Lyot := colim(LNis — LAlLNis — LNisLAlLNis — )

In particular, Lyjo¢ preserves finite products, since filtered colimits, Lyis, and La: all do.



SETUP OF MOTIVIC HOMOTOPY THEORY 5

Proof. Because Nisnevich descent can be checked on Nisnevich squares, and filtered colimits
commute with finite limits in Spc, the subcategory of Nisnevich sheaves is closed under filtered
colimits. By cofinality, the colimit above sends any presheaf F' to a Nisnevich sheaf Lyjot(F).
Since the category of Al-invariant presheaves is closed under all colimits, the same argument
shows that Lyio(F) is also Al-invariant. We conclude that Ly factors through Spec(S). As
Map(Lyot F, X) — Map(F, X)) is an equivalence for any motivic space X € Spc(S), this identifies
Lot as the left adjoint to the inclusion. O

Corollary 2.2.6. The image of Lyt : Smg — Spc(S) consists of compact objects, which
generate Spc(S) under small colimits. In particular, Spc(S) is compactly generated and Spe(S)¥
is the smallest full subcategory of Spc(S) containing Lot (Smg), which is closed under small
colimits in Spc(S).

Proof. Lyt preserves compact objects, because its right adjoint preserves filtered colimits. [

2.2.1. Pointed motivic spaces. We equip the category of pointed motivic spaces
Spc(S). := Spe(S).) =~ Spe(S) ®pr, Spe,

with the smash product X AY := cofib(X VY — X x Y). Then, Spc(S). is a presentably
symmetric monoidal category, i.e. Spc(S). is presentable and the the smash product commutes
with small colimits in each variable.

2.2.2. A'-homotopy. Given amap H : X x A! — Y in Smg and two S-points a,b : S — Al. Then

id idx b
the maps X 090, % o Al and X Y990 x5 AL are inverses to the equivalence A' x X — X

in Spc(S). We conclude
Lemma 2.2.7. The maps H, : X — Y and Hy, : X — Y are equivalent in Spc(S).

2.3. Motivic Spheres. The following are some of the most important examples of motivic
spaces. We will perform a few computations to get a better feel for A'-homotopy theory. To
begin, consider a diagram of schemes
v
U X

We can compute the pullback of the above span as the open subscheme of V' corresponding
to the preimage of U under the underlying map of sets V — X.
Let G,, denote the pointed S-scheme (A'\ 0,1). By the above principle, the following squares

open imm.

G,y X G,y —— G,,, x Al G,, — Al
[1,7]
[£,1] [Pl

are pullback squares. Moreover, these are Nisnevich squares, so that after contracting A' we
obtain pushout squares of motivic spaces:

Al X G ————— A2\ 0 Al

Gm X Gm PT*H Gm Gm —_—> %
pro h [1’1]
Gy —————— A%\ 0 M L BN
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Consider now the following diagram:

pra
G 55— G X Gy — 22— G

=] -

Grm G V G colvid Grm

| | |

* * *

Computing first the horizontal pushouts yields the cospan
A2\O +— x — x,
whose pushout is A% \ 0. Conversely, if we first take the vertical pushouts, we obtain the cospan
x «— G NG, — #,
whose pushout is ¥(G,, A G,,). We have constructed equivalences of pointed motivic spaces
Y(a\ 0) ~ P! and  X(G,, AG,,) ~ A%\ 0,
where A%\ 0 is pointed at (1,1) and P! is pointed at [1,1].

Definition 2.3.1. For integers d > j > 0, we define the (d, j)-motivic sphere as the pointed
motivic space
S = 8T A G
: .
Generalizing the above discussion via induction, we obtain the following basic examples of

motivic spheres.

Proposition 2.3.2. There are explicit equivalences of pointed motivic spaces
§%t = S1 A G, ~ P!
and
G2n=ln — gn=1 A Gn ~ A"\ {0}.
Applying St A (=) to the latter equivalence yields
S2mm o GUA(A™\ 0) = cofib(A™ \ 0 — *) =~ cofib(A™ \ 0 — A™).
2.4. Base Change. We will treat the following results more thoroughly when we will discuss
the motivic six functor formalism. For now it will be useful to have the following base change
results at hand: If f : T — S is a morphism of schemes then precomposition by the base change
functor
Smg — Smp, X +— X xgT

defines a functor f, : P(Smy) — P(Smg), which is right adjoint to the Yoneda extension
f*:P(Smg) — P(Smr), (X € Smg) — X x5 T.
The functor f. preserves Al-invariant Nisnevich sheaves, so we will also denote by
f.: Spe(T) — Spe(S)

its restriction to motivic spaces. The left adjoint of f, is denoted f* and satisfies f* o Lyjot >
Lot © f*. In particular, f*(X) =T xg X for all X € Smg.

Lemma 2.4.1. The functor f* : Spc(S) — Spc(T') preserves finite products.

Proof. Since the motivic localization Lygo preserves finite products the statement follows from
the analogous fact on the level of presheaves, see [Lur09, Proposition 6.1.5.2.]. (I
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If f: T — S is smooth, then f* : P(Smg) — P(Smr) is given by precomposition by the
forgetful functor Smp — Smg. Consequently, the forgetful functor Yoneda extends to a further
left adjoint fz : Spe(T) — Spe(S) of f*.

Proposition 2.4.2 (Nisnevich Separation). Let {f; : U; — S} be a Nisnevich cover of a scheme
S.
(1) The family of functors {f} : P(Smg) — P(Smy,)} jointly detect Nisnevich (resp. mo-
tivic) equivalences;
(2) The family of functors {f} : Spc(S) — Spc(U;)} is conservative.

Proof. (2) follows from (1). (2) follows immediately from (1). For (1), let h: F — G be a
morphism in P(Smg) such that each pullback f7(h) is a Nisnevich (resp. motivic) equivalence.
For any finite tuple (i1,...,%,) write

firyin: Uiy Xg o= xg Uy, — 8§

n

for the corresponding iterated fiber product. Each f7 , (h) is a Nisnevich (resp. motivic)
equivalence as well.

Consider the augmented simplicial endofunctor Cs — id of Fun(P(Smg), P(Smg)) whose n-th
term is

8] yeneyln

For every X € Smg the colimit colima Ce(X) — X is a Nisnevich covering sieve, hence for every
presheaf F' the map colima Co(F) — F is a Nisnevich equivalence. By the 2-out-of-3 property
for Nisnevich (resp. motivic) equivalences, h is a Nisnevich (resp. motivic) equivalence if and
only if colima C4(h) is such.

Finally, Nisnevich (and motivic) equivalences are stable under colimits, so the assumption
that each f(h) is an equivalence implies colima Co(h) is an equivalence, and thus h itself is an
equivalence. This proves (1). O

2.5. Digression: Motivic Thom Spaces. Motivic Thom spaces are essential in motivic ho-
motopy theory, as they allow one to distinguish vector bundles over the same base even after
contracting A', and they serve as fundamental building blocks for cohomology theories such as
algebraic cobordism.

Let Vect(Smg) denote the ordinary category of vector bundles and vector bundle morphisms
on smooth S-schemes. We view Vect(Smg) as a symmetric monoidal category via the external
product:

(E—-X)x(E'=Y)r— (ExE — X xY).
We equip the arrow category Fun([1], Smg) with the Day convolution symmetric monoidal struc-
ture, where the poset [1] is symmetric monoidal via the minimum function. By inspection, the
functor

Vect(Smg) — Fun([1], Smg), (E—=-X)— (FE-X)—X),

admits a natural lax symmetric monoidal structure.

The Thom space functor Th(—) is then defined as the following composite of lax symmetric
monoidal functors:

Vect(Smg) — Fun([1],Smg) — Fun([1], Spc(S)) cofib Spe(9)«.
Intuitively, for a vector bundle E — X, the motivic Thom space Th(E) is obtained from E by
collapsing the complement of the zero section to a point, i.e.

Th(E) ~ E/(E — X),
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just as in classical topology. This construction generalizes the familiar topological Thom space
to the motivic world.
We denote by Vectg C Vect(Smg) the full subcategory spanned by vector bundles over S itself.
Lemma 2.5.1. The lax symmetric monoidal composite
Vectgs — Vect(Smg) AN Spe(S).«
is symmetric monoidal.
Proof sketch. We need to check that for any two vector bundles E, E’ over S, the map
Th(E) A Th(E") — Th(E x E')

is a motivic equivalence. Choose a Nisnevich cover of S on which both E and E’ trivialize. By
applying Proposition 2.4.2 to this cover, we can assume that both E and E’ are trivial bundles.
In this case, Proposition 2.3.2 factors the map under inspection into equivalences:

(Al/Al _ {0})/\n ~ (52,1)/\n ~ S2n,n ~ A"/An _ {0}
O

In fact, Vect(Smg) Ib, Spe(S)s is symmetric monoidal as a slight adjustment of the previous
proof shows.

2.6. Motivic Spectra. Just as the category of spectra is obtained from pointed spaces by freely
inverting smashing with S, we want to construct the category of motivic spectra from pointed
motivic spaces by freely inverting smashing with P1:

Definition 2.6.1. The category (SH(S),®) of motivic spectra is defined as the initial pre-
sentably symmetric monoidal category under pointed motivic spaces

¥ Spe(S). — SH(S)
on which tensoring with the bigraded spheres $%7 := ¥.°°8%J defines an equivalence
2= 8 @ (=) : SH(S) — SH(S).
Notation 2.6.2. We write Q%7 := (X49)~1 and
g4 .= QbI(S)

for all d > j > 0. k-fold shifts by P!, G,, and S*, respectively, will be denoted by subscripts,
e.g. 2621 and Qﬁil.

Let’s unravel the definition:

Remark 2.6.3. Let C be presentably symmetric monoidal. Let F' : Spe(S). — € be a continu-
ous symmetric monoidal functor which sends all motivic spheres S%/ to smash invertible objects.
Then, there exists a unique symmetric monoidal continuous functor SH(S) — C making the di-
agram

Spe(S)-«

commute.
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Construction 2.6.4. For any morphism of base schemes f : S — T there is a unique symmetric
monoidal continuous functor f* : SH(T) — SH(S) equipped with an equivalence f*¥° ~ ¥ f*
of functors Spc(T), — SH(S). We denote the right adjoint of f* by fi : SH(S) — SH(T).

For proving a telescoping localization formula for motivic spectra we need the following
Lemma:

Lemma 2.6.5. The cyclic permutation (1,2,3) : (P1)"3 — (P!)"3 is homotopic to the identity
in Spc(S)..

Proof. Under the explicit equivalence (P1)"3 =~ cofib(A%\ 0 — A3) from Proposition 2.3.2 the
swap action corresponds to the swap action of A® (Because the motivic J-homomorphism is
symmetric monoidal). It suffices to write (1,2,3) : A> — A% as a composition of maps which each
is Al-homotopic to the identity via a homotopy that sends Al x (A% \ 0) to A3\ 0.

To this end we factor the matrix encoding (1,2, 3) into a product of integer valued elementary
matrices. For the elementary matrix E(a) with unique nonzero off diagonal entry a € Z the
required A'-homotpy is given by

AP x A — A3 (X,t) — E(ta)(X).

Theorem 2.6.6. We let Spc(S).[(P1)~1] denote the colimit of the diagram

Spe(S). T2 Spe(S). T Spe(8). T -

computed in the category of presentable categories and left adjoint functors Prl. Then this colimit
is an idempotent algebra in left Spc(S). modules in Pr’ and the canonical continuous symmetric
monoidal functor

Spe(S).[(P1) ™ — SH(S)

is an equivalence of categories under Spc(S)..

Proof. This is a categorification of the group completion theorem, see [Rob13]. This theorem is
applicable in our situation precisely because Lemma 2.6.5 holds. ([

Remark 2.6.7. Since ¥*° and ® preserves colimits, the functor SH(S) — SH(S) given by
Vg1 =2 = (228N @ (—) = colim(0 + (=) —)
is equivalent to categorical suspension. We conclude that SH(S) is a stable category.

Corollary 2.6.8 (Motivic Spanier-Whitehead Category). The category of motivic spectra SH(S)
is compactly generated. Any compact motivic spectrum can be written as QF, XX for some
n € No and some compact motivic space X € Spc(S).. Moreover, for two compact pointed
motivic spaces X,Y € Spc(S). the map

colim,, Mapg,.(s), ((P")"" A X, (P1)"" AY) — Mapgy(s) (5= X, 57Y)

18 an equivalence.

Proof. By [Lur09, Chapter 5] the category of compact objects in the telescoping colimit
Spe(S).[(P1) ™) = SH(k)

is the telescoping colimit of the category of compact objects; here the latter colimit is computed in
the category of small categories. The statement follows for the formula for objects and mapping
spaces in filtered colimits of small colimits. O
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Proposition 2.6.9. If f : S — T is a smooth morphism of base schemes, then f*: SH(T) —
SH(S) admits a left adjoint fu : Sh(S) — SH(T) and the Bech-Chevalley transformations

fpET — X% and  fyYe — e fy
are equivalence of functors Spc(S), — SH(T') and SH(S) — SH(T), respectively.
Proof. We claim that the canonical map
fa o (PEA (=) — (PR A (=) o fy
is an equivalence of functors Spc(S). — Spce(T).. Indeed, for any X € Smg the map
X x5 (8 xzPY) — X xp (T xz Ph)

is an isomorphism in Smp and we might pass to colimits in X. In light of Theorem 2.6.6 the
result follows from the claim by very general arguments, e.g. see [Neu25, 2.6.16]. Essentially, we
define an N parametrized category n — Spc(S). with transition maps given by smashing with
PL, and similarly for T. Now f* provides a parametrized functor between these two parametrized
categories. Because the Beck-Chevalley condition holds, we can pass to the parametrized left
adjoint, pointwise given by fx. Finally, we take colimits in N to get our required functor

fu: SH(S) = SH(T). O

2.7. Example: Motivic Thom Spectrum. Motivic Thom spectra provide a bridge between

algebraic vector bundles and stable motivic homotopy theory. Motivic Thom spectra are compa-

rably understandable, but are not too far from the motivic sphere to yield a good approximation.

The motivic Thom spectrum MGLg represents algebraic cobordism—for our purposes this is by

definition, though there are efforts to give a more geometric construction of algebraic cobordism.
We claim that the symmetric monoidal composite (see Lemma 2.5.1)

Vectg < Vect(Smyg) o Spe(9).« RN SH(S)

sends all vector bundles over S to smash-invertible motivic spectra. Indeed, given a vector
bundle E over S, we may choose a Nisnevich cover on which F trivializes. By the SH-analog
of Proposition 2.4.2 applied to that cover, we may assume that E is trivial. The Thom space
of a trivial bundle over S is given by a motivic sphere, which we forced to be invertible in the
construction of SH(.S).

We view the ordinary groupoid Vectg of vector bundles on S as a commutative monoid in
spaces. From the claim, we deduce that the above functor factors through a unique symmetric
monoidal functor

J : Vect§? — SH(S),
where Vects — Vect%? denotes the group-completion in CMon(Spc). This functor is called
motivic J-homomorphism.

Construction 2.7.1. When S = Spec(R), then Vect§™® is known as the algebraic K-theory
K(R) of R. When S is not affine, this is not true in general but [BH20, Bachmann-Hoyois,
16.1] show that J factors through the map Vect$® — K(S) to algebraic (Thomason-Trobaugh)
K-theory.?

Finally, restricting this J-homomorphism to virtual vector bundles of virtual rank 0 gives the
motivic j-homomorphism
j: K(S)" — SH(S),
where the map K (S)? — K(S) is the fiber in CGrp(Spc) of the rank map
rank : K(S) — Z,

3When I gave the talk, I ignored the difference between Vect§? and K(S) = (Perf(S)core)erp,
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factoring the ordinary rank function rank : Vects — Z through the algebraic K-theory.
In the seminar talk, I presented the following as the motivic Thom spectrum. But this
definition is not quite big enough as I'll explain in a second.

Definition 2.7.2. We define the preliminary motivic Thom spectrum as the colimit of the j-
homomorphism:

Thg(j) := colim(j : K(S) — SH(S)) € CAlg(SH(S)).

Note that the colimit of a symmetric monoidal functor naturally inherits a commutative algebra
structure, by equipping the colimit functor with a symmetric monoidal structure with respect to
Day convolution on the functor category.

By construction Thg(j) will have Thom isomorphisms for virtual vector bundles over the ter-
minal S-scheme. But this is not enough to obtain Thom isomorphisms for virtual vector bundles
over any smooth finite type S-scheme. This is then guaranteed by the following construction

Construction 2.7.3. Bachmann-Hoyois [BH20, Section 16] construct a functor

manifesting the functoriality of the Thom spectrum construction. We define the motivic Thom
spectrum

MGLg := coli Thy (5).
s Jg;gslmrréf# x ()

Remark 2.7.4. Note that for a smooth S-scheme f: X — S and E € Vectx we have
f#3(E) = fy Th(E) = Th(E)

in Spc(9)«. Unraveling the definition of the motivic Thom spectrum we obtain

MGLg = coli Thx () = coli lim j(E
GLs = colim fy Thy(j) = colim f (Egg(}r;g)oj( )>

~ coli (B
resme bk ot (E)

= colim Th(E)
feSms, EEK(X)0

where we define Th(E) := fxj(E) for any virtual vector bundle E € K(X)°, c.f. [BH20, Theorem
16.13.).

Remark 2.7.5. One can show that the canonical map
colim,, QF: £ Th(V,,) — MGLg
is an equivalence, where V,, is the tautological bundle on the infinite Grassmannian
Gr(n)g := colimg_,o Gr(n, k)s
of n-planes, see [BH20, 16.13].

Remark 2.7.6. MGLg enhances to an E-algebra (even a normed motivic spectrum), see
[BH20, Section 16.1]. To this end, one identifies MGLg with the Sm’-parametrized colimit of
the Sm¢’-parametrized j-homomorphism. The latter is the natural transformation

j:K(-)"= SH(—-)

of the two functors Smg” — Cat.
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3. MOTIVIC STABLE STEMS

Definition 3.0.1. Let X € SH(S) be a motivic spectrum and d,j € Z. We define the motivic
stable homotopy groups as the abelian group of homotopy classes of maps

ma;(X) = (5%, X].
The i-th motivic stable stem is the graded abelian group
71','(8)]' = 7Ti_j7_j(8) = [EOOSZ, EOOG%@]

The 0-th motivic stable stem 7(S), is a graded (non-commutative®) ring

Let us start by constructing an interesting element of 7y(S).. In topological homotopy theory
the first interesting element of the stable stems is induced by the Hopf fibration n : C2\0 ~ S3 —
CP! ~ S2. The canonical map n : A2\ 0 — P! also exists in the world of smooth S-schemes.
Under the explicit equivalence 2.3.2 this is send to a map

n:%(Gm AGp) ~ 8% = B6,, ~ 521
of pointed motivic spaces. By suspending 3*° we view 7 as an element
n € mo(S)-1

of the stable stems.

Say S = Spec(k) for k a field. Then we can construct a bunch of less interesting elements
of the motivic stable stems as follows: For any a € k*, we obtain a map * — G,, of smooth
k-schemes. This yields a map S° — G,,, of pointed motivic spaces, i.e. an element

[a] € m0(S)1-

Definition 3.0.2. Let k be a field. The graded ring KMW (k) called Milnor- Witt-K-Theory of k
is defined to be the quotient of the free non-commutative ring on generators [a] in degree 1 for
a € k* and a generator 7 in degree —1, subject to the following relations

(1) mla] = [a]n,

(2) [a][l —a] =0 for a € k\ {0,1}, (Steinberg relations)

(3) [ab] = [a] 4 [b] + nla][b],

(4) n(2+n[=1]) =0.
Remark 3.0.3. The graded ring KM (k) called Milnor K-theory of k is defined as the quotient
of KMW (k) by the central element 7.

There is a natural map KM(k) — K. (k) to algebraic K-theory, which is an isomorphism in

degree 0,1 and 2, but not for larger degrees, in general.

Theorem 3.0.4 (Morel). Let k be a field. The 0-th motivic stable stem mo(S). is via the elements
constructed above isomorphic to Milnor-Witt K-theory KMW (k).
4. STRICT A'-INVARIANCE

Given a Nisnevich sheaf of abelian groups A then we can compute its n-fold deloping K(A,n
in the topos Sh™®(Smg). For any smooth scheme X € Smg the group mo Map(X, K(4,n)) :=
[X, K(A,n)] computes the sheaf cohomology group HZ,(X; A) of X with coeflicients in A. When
n = 1, this remains true for a sheaf of not-necessarily-abelian groups G and then

is the group of G-torsors on X with respect to the Nisnevich topology.

4Morel proved that mo(S)« is commutative up to multiplication by an element denoted e.
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If A is Al-invariant then we can compute
Hl(\)IiS(X; A) = [X» A} = [LAle A]Spc(k)

in the much nicer category Spc(k) of motivic spaces. Wouldn’t it be nice if we could also compute

H (X A) & [X, K (A1) & [Ly X, K (A1) speisy-
in the category Spc(k) of motivic spaces, i.e. wouldn’t it be nice if
H™"(X x A'; A) — H"(X; A)
was an isomorphism for all n € N. This is taken care of by the following (difficult) theorem:

Theorem 4.0.1 (Morel). Let k be a perfect field and A a Nisnevich sheaf of abelian groups on
Smy. Then, the following are equivalent
1) Forn = 0,1 and any X € Smg the map H"(X x A'; A) — H™(X; A) is an isomorphism.
(In this case A is called strongly Al-invariant)
2) Foralln € N and any X € Smg the map H"(X xAl; A) — H™(X; A) is an isomorphism.
(In this case A is called strictly Al-invariant)

Example 4.0.2. For any n € N; consider the sheaf GL,, : Sm;” — Grp represented by the linear
algebraic group GL,,. Since every Zariski GL,,-torsor is representable, every such torsor defines
a Nisnevich sheaf, and therefor a torsor in the Nisnevich topology on Smy. Conversely, it is a
theorem that any Nisnevich GL,-torsor trivializes Zariski locally. We conclude that GL,,-torsor
in the Zariski topology are canonically in bijection with GL,-torsor in the Nisnevich topology:

H&Tis(_a GLn) = H%ar(_v GLn)
In particular, for G,, = GL; we obtain the Picard group
H(X;6,,) & HE, (X5 6,,) = Pic(X)

as sheaf cohomology of any smooth k-scheme X € Smy. It is not hard to see that G,, is
Al-invariant as we can compute the units R[t]* = R for any regular ring R. The sheaf
Pic(—) ~ K(G,,,1) is also Al-invariant on smooth k-schemes (this follows from a nontrivial
result in commutative algebra). By the above theorem 4.0.1 of Morel, it then follows that
HZ. (—,Gy,) is Al-invariant for all n € N.

In fact, if k is a perfect field, and X € Smy is an affine smooth scheme, the canonical map

[X, BGLn]ShNis(Smk) — [X, LAI BGLn]Spc(k)

is an isomorphism. By the previous discussion, this group is equal to H}, (X, GL,) the set of
isomorphism classes of rank n projective modules over the global sections of X.

5. HOMOTOPY SHEAVES
The number one tool for unstable motivic homotopy theory are the homotopy sheaves.

Definition 5.0.1. Let X € Sh™®(Smg). Then my(X) € Sh™®(Smg;Set) is defined as the
Nisnevich sheafification of the presheaf U — mo(X (U)).

If (X, z) € Sh™*(Smyg), is a pointed Nisnevich sheaf, then 7, (X, z) € Sh™*(Smg; Grp) is defined
as the Nisnevich sheafification of the presheaf U — m, (X (U), z(U)).

Remark 5.0.2. The homotopy sheaves arise from the Postnikov tower of the topos ShNiS(SmS) in
the sense of [Lur09, 6.5.1]. If S has finite Krull dimension then Sh™*(Smg) has finite homotopical
dimension, so the homotopy sheaves jointly detect equivalences. Moreover, Postnikov towers
converge.
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To simplify the theory we assume that S = Spec(k) is the spectrum of a field. Let us cite are
hard theorem due to Morel:

Theorem 5.0.3. If X € Spc(k). then m,(X, ) is strongly A -invariant.

By the following corollary we can set up obstruction theory (k-invariants, ...) in Spc(k)s just
as we are used to in Spc:
Corollary 5.0.4. Let k be a perfect field.
1) If X € Spc(k). then x,(X,x) is strictly At-invariant for all n > 2.
2) Let X € Spc(k). be connected. Then for every n > 1 the sheaf X<, is Al -invariant.
Proof. (1): By Theorem 5.0.3 the sheaf 7, (X) = m; (2" 1X) is a strongly Al-invariant sheaf of

abelian groups. By Theorem 4.0.1 it is strictly Al-invariant. (2): Inductively apply Lemma 5.0.5
below to the fiber sequence K(m, ,(X),n+1) = X<pi1 = X<p. O

Lemma 5.0.5. Let F — E — B be a fiber sequence in Sh™*(Smy,), with B connected and
Al-invariant. Then F is Al-invariant if and only if F is Al-invariant.

Proof. We have a morphism of fiber sequences with ¢ an equivalence:
F E B

F(—xM) ———— B(— x A') ———— B(— x A!)

Since B is connected a is an equivalence if and only b is an equivalence [Lur09, Lemma 6.2.3.16.].
O

Here is another fact which I want to leave here for general culture:

Theorem 5.0.6 (Morel, Unstable Connectivity Theorem). If X € Sh™*(Smy) is n-connected
then 50 is Lot (X).

6. HOMOTOPY T-STRUCTURE

The homotpoy t-structure is a t-structure on SH(S) over a general base scheme. The homo-
topy t-structure is not the only t-structure on versions of SH(S) that is used in practice (e.g.
Chow t-structure). The homotopy t-structure is good for “standard connectivity business” like
convergence of the Adams Novikov spectral sequence for bounded below objects. Morally, the
homotopy t-structure is the t-structure on SH(.S) compatible with homotopy sheaves. By anal-
ogy the homotopy t-structure should behave like the standard t-structure on spectra. In fact,
the real Betti realization Begr : SH(R) — Sp is t-exact.

Let SH(S)>o denote the full subcategory of SH(S) generated under small colimits and ex-
tensions by

{3¢, 52X : X €Smg and k € Z}.
By [Lurl2, 1.4.4.11] SH(S)>o is the connective part of a unique t-structure on SH(S), called
the homotopy t-structure.

Lemma 6.0.1. Let f: T — S be a smooth morphism, then f*: SH(S) — SH(T) is t-exact.

Proof. We need to prove that f*(SH(S)>0) € SH(T)>o and f*(SH(S)<o) € Sh(T)<o. The first
inclusion follows because for all X € Smg we have

FHEE X)) =B UP(X x5 T).
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By adjunction, the inclusion f*(SH(S)<o) C Sh(T")<o is equivalent to the inclusion fu(SH(T)>0) C
SH(S)>o. But, for any X € Smy and k € Z we have an equivalence

F4(5¢,55X) = B8 TP fp(X) = 2§, X
in SH(S). O
The following theorem explains the name of the homotopy t-structure:

Theorem 6.0.2 (Morel’s Connectivity Theorem). Let k be a field and E € SH(k). Then
(1) E € SH(k)>q if and only if the homotopy sheaf

7, (E):=m, (QOOE_p’_qE)

Tp,q
is zero for all p—q < d.
(2) E € SH(k)<a if and only 7, ,(E) =0 for allp —q > d.

Proof Sketch. Consider the class of spectra E such that ﬂnq(E) =0 for p — g > 0. This class
is closed under colimits and extensions, and thus defines the connective part of a t-structure
on SH(k), which we denote by 7. The non-connective part of this t-structure is given by the
right-hand side of (2) (we black-box this fact).

It then suffices to prove the implications from left to right in (1) and (2).

For (1), take any F € SH(k)>o. By closure under extensions and colimits, we may assume
F =%§ %X for some X € Spc(k). We must show that [F, E] = 0 for every T-negative E.
Finally, being 7 -negative is equivalent to having QOOEgm (E) ~ x for all k € Z, by conservativity
of homotopy sheaves.

For (2), let E € SH(k)<_1, i.e., [F,E] =0 for all F € SH(k)>o. Letting F' run through all
¥E N°X shows that Q°Xg (E) ~ %, so E is T-negative. O

7. APPENDIX: BETTI REALIZATION

Construction 7.0.1 (Sketch). Equipping the C-points of a finite type smooth R-scheme with
the analytic topology defines a functor of ordinary categories

Smg — Top®?, X = X(C)™

where the Cy-action comes from complex conjugation. Here TopCZ denotes a nice enough full
subcategory of the ordinary category of topological spaces equipped with a Cy-action and Cs-
equivariant maps (e.g. the category of Ca-CW-complexes). Let Top®? — Spcg, be the Dwyer-
Kan localization to genuine Cs-spaces, i.e. the localizations at maps which induce homotopy
equivalences on Cs-fixed points, as well as, on underlying spaces. Then the composite

Smg — TopC2 — Spcg,

satisfies Nisnevich descent. Indeed, one checks that Nisnevich squares are send to pushouts
squares of topological spaces with a cofibrant leg in the the genuine model structure on Topcz.
We obtain a unique colimit preserving functor Sh™'*(Smg) — Spcg, extending the previous
construction. The latter functor also preserves products as Smg — Spce, and Lyis do. Note
that Al € Smp is send to C € Spce, equipped with the conjugation action. This genuine
Cs-space is Cy-equivariantly contractible.

Definition 7.0.2. Hence, we can define the Betti realization as the unique colimit preserving
functor

Be: Spc(R) — Speg,
extending Smg — Spcg,, X = X(C)*" along the Yoneda embedding. The composite functor

()2

Beg : Spc(R) — Speg, — Spe
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is called real Betti realization. The composite functor

escz
Bec : Spe(R) — Speg, Bes?, Spe

is called complex Betti realization.

Notation 7.0.3. We don’t change notation for the induced continuous symmetric monoidal
functors Spe(R).« — Spe(e,) «

Example 7.0.4. For any X € Smg we have Ber(X) = X(R)*® the space of R-points equipped
with the euclidean topology. For example Beg(G,,) ~ S° and Be¢(G,,) ~ S*. More generally,
Begr(S4P) ~ S9=P while Bec(5%P) ~ S9.

Because the functors Ly: and Sh™S(Smg) — Spcg, preserves products, Betti realization

preserves products as well.

Lemma 7.0.5. The Cy-space Be(G,,) ~ S7 is equivalent to the representation sphere of the
tautological orthogonal Cs-representation 7.

We conclude that the symmetric monidal composite functor
B n® _ TNA—
Spe(R). =% Spee, . — Spe, = gS‘chQ,*[(bﬂ)A L (STH)" 1]
factors through a unique continuous symmetric monoidal functor
Be: SH(R) — Spg, with BeoX$® ~ X o Be.

Definition 7.0.6. We define real Betti realization as the composite

Bex : SH(R) — Spe, —— Sp

of Betti realization with geometric fixed points. The composite functor

eSc‘2
Beg : SH(R) = Spe, ——2 Sp
is called is called complex Betti realization.

Let p denote the morphism {1} — G, in Spc(R).. Then, p becomes an equivalence after
real Betti realization. Tom Bachmann proved that the induced functor

Beg : SH(R)[p~'] = Sp
is an equivalence. We conclude that for any £ € SH(R) and p — q € Z:
Tp—q(BerE) = [ZOOSpfq,E[pfl]}SH([R) = [8°8P79, colim,>, G2 1 ® E|
= colimy>q 7,y o (B)(%). (2)
Proposition 7.0.7. The functor Beg : SH(R) — Sp is t-exact for the homotopy t-structure on
SH(R).

Proof. This follows from Morel’s connectivity theorem and the previous Equation (2). (I
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