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1. Introduction

Motivic homotopy theory aims to be to algebraic varieties what homotopy theory is to man-
ifolds. The interaction between motivic and “ordinary” stable homotopy theory has proven to
be remarkably fruitful, offering new tools to compute the homotopy groups of spheres.

In this first talk, we introduce the main objects of interest—spaces, spheres, stable stems,
homotopy sheaves, and Thom spaces/spectra—in the world of motivic homotopy theory.

2. Definition of the Motivic Categories

What we morally want to do is take the category of schemes and make the affine line A1

contractible. In other words, we would like to universally (and homotopy coherently) invert the
projection

X × A1 −→ X

for all (sufficiently nice) schemes X.
However, the category of schemes does not admit all small colimits, so there is no controlled

way to universally invert a collection of morphisms within this category. To address this, we
replace the category of schemes with a sheaf category on finitely presented smooth schemes.

For this construction, we want a subcanonical Grothendieck topology on finitely presented
smooth schemes. By analogy to homotopy theory we moreover would like a topology where
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2 FABIO NEUGEBAUER

a presheaf satisfies descent if and only it satisfies some sort of excision property-that is, sends
excisable squares to pullback squares. A basic example of such a topology is the Zariski topology.

Unfortunately, for the applications we have in mind,1 the Zariski topology admits too few
covers2. We would prefer a topology that behaves more like the Euclidean topology—that is, one
with finer coverings. The étale topology fits this intuition, but it is not generated by an excision
property and suffers from certain drawbacks (such as infinite homotopical dimension and failure
of descent for algebraic K-theory).

Instead, we will work with the Nisnevich topology, which lies between the Zariski and étale
topologies.

Since we aim to obtain homotopy-invariant notions, our sheaves will take values in the ∞-
category of spaces Spc. Throughout this seminar, we will use the language of ∞-categories,
which we will simply refer to as categories from now on.

2.1. The Nisnevich Topology. Let S be a scheme. To keep the discussion simple, we as-
sume that S is quasi-compact, quasi-separated, Noetherian, and of finite Krull dimension. The
Noetherian and finite-dimensional assumptions are not strictly necessary, but dropping them re-
quires some technical adjustments in the definitions that follow. The overall theory (and proofs)
remains essentially the same.

Recall that a morphism of finite type f : X → S is smooth if and only if it is flat and the
relative cotangent sheaf ΩX/S is locally free of rank equal to the relative dimension of X/S.

Definition 2.1.1. We denote by SmS the category of smooth S-schemes of finite type. For
morphisms we allow all morphisms of S-schemes.

The category SmS is small and admits finite limits.
A morphism of schemes X → Y is called étale if it is smooth of relative dimension 0.
An étale cover {pi : Ui → X} is a family of étale morphisms that are jointly surjective on the

underlying Zariski spectra. In other words, for every field k and every k-point x : Spec(k)→ X,
there exists (possibly after a finite field extension) a lift of x to some Ui:

Ui X

Spec(k̃) Spec(k)

A Nisnevich cover {pi : Ui → X} is a family of étale morphisms such that for every field k and
every k-point x : Spec(k)→ X, there exists a lift of x to some Ui without extending the residue
field:

Ui X

Spec(k)

Hence, every Nisnevich cover is an étale cover.
A Zariski cover {pi : Ui → X} is a jointly surjective family of open immersions. Since open

immersions induce isomorphisms on residue fields, every Zariski cover is a Nisnevich cover.
To construct an étale cover that is not Nisnevich, consider a nontrivial separable field exten-

sion, for instance
Spec(C) −→ Spec(R).

Fact. Admitting étale descent is equivalent to satisfying both Nisnevich descent and finite étale
descent (i.e., descent for finite étale covers).

1For instance, homotopical purity does not hold for the Zariski topology.
2And therefore Sch → ShZar(Sch) preserves to few colimits
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A presheaf F : Smop
S → Spc satisfies Nisnevich descent if and only if it satisfies Nisnevich

excision in the following sense.

Definition 2.1.2. A pullback square in SmS

W V

U X

i′

p

i

is called a Nisnevich square if

• i is an open immersion,
• p is étale, and
• the induced morphism

p−1(X − U) −→ (X − U)

is an isomorphism, i.e. in the equivalent pullback diagram

p−1(X − U) V

X − U X

p

reduced

the left vertical map is an isomorphism.

Remark 2.1.3. Here (X−U) ↪→ X denotes the unique reduced closed immersion whose image is
the complement of i(U). Then p−1(X −U) ↪→ V is the corresponding reduced closed immersion
whose image is the preimage of the set |X| − |U | under the set map |p|. Because W → V is
an open immersion with image |p|−1(|U |), we see that p−1(X − U) ↪→ V is the unique closed
immersion with image the set |V | − |W |. Thus, assuming p is étale and i is an open immersion,
the square above is Nisnevich precisely when

p : (V −W )red −→ (X − U)red

is an isomorphism.

Lemma 2.1.4. If i : U → X and p : V → X form a Nisnevich square, then {i, p} is a Nisnevich
cover of X.

Proof. Let x ∈ X. If x ∈ U , then x lifts along i. Otherwise, x ∈ X − U , and by definition of a
Nisnevich square, x lifts along p. □

In fact, the Nisnevich topology is generated by Nisnevich squares in the sense of cd-structures.
We record the following key consequence without proof.

Theorem 2.1.5. Let F : Smop
S → Spc be a presheaf on smooth finite type S-schemes. Then F

is a sheaf for the Nisnevich topology if and only if:

• F (∅) ≃ ∗, and
• for every Nisnevich square W = U ×X V , the canonical map

F (X) −→ F (U)×F (W ) F (V )

is an equivalence.

It follows that the Yoneda embedding SmS → ShNis(SmS) preserves the initial object and
sends Nisnevich squares to pushout squares.

Features of the Nisnevich topology.
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• If dim(S) = d, then the homotopical dimension of the topos ShNis(SmS) is at most d.
(This fails for the étale topology, where this dimension can be infinite.) In particular,

ShNis(SmS) is hypercomplete, and Postnikov towers converge.
• Because Nisnevich descent can be checked via Nisnevich excision, the subcategory of
Nisnevich sheaves is closed under filtered colimits in the presheaf category. (This is very
convenient in practice)
• The Nisnevich topology is subcanonical (since the fpqc topology—and hence the étale
topology—is already subcanonical). In light of Theorem Theorem 2.1.5, this means
that a Nisnevich square is already a pushout in SmS . Morally, the Yoneda embedding
SmS ↪→ ShNis(SmS) preserves precisely those pushout squares that are Nisnevich—and
not many more.

2.2. A1-invariance.

Definition 2.2.1. A presheaf X : Smop
S → Spc is called A1-invariant if for every U ∈ SmS , the

projection

U × A1 −→ U

is sent to an equivalence

X(U)
≃−−→ X(U × A1).

By general principles (see [Lur09, 5.5.4]), the inclusion of A1-invariant presheaves into all
presheaves admits a left adjoint, denoted LA1 . We can describe this left adjoint more concretely.

Definition 2.2.2. The standard cosimplicial scheme is the functor

�
• : ∆ −→ SmS , [n] 7−→ �

n
S ⊆ An+1

S ,

where �n
S is the closed subscheme cut out by the equation

T0 + · · ·+ Tn = 1,

and the structure maps are induced by partial projections and face inclusions.

Note that �n
S
∼= An

S for all n ≥ 0.

Theorem 2.2.3. Let F ∈ P(SmS) be a presheaf. Then there is a unique equivalence under F

LA1F
≃−−→ colim[n]∈∆op F ((−)× �n

S). (1)

An important consequence of Equation (1) is that the functor LA1 preserves finite products.

Definition 2.2.4. A motivic space is an A1-invariant Nisnevich sheaf

F : Smop
S −→ Spc.

The category of motivic spaces is denoted

Spc(S) ⊆ P(SmS).

Lemma 2.2.5. The inclusion Spc(S) ⊆ P(SmS) preserves filtered colimits and admits a left
adjoint LMot, whose unit is given by

id −→ LMot := colim
(
LNis → LA1LNis → LNisLA1LNis → · · ·

)
.

In particular, LMot preserves finite products, since filtered colimits, LNis, and LA1 all do.
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Proof. Because Nisnevich descent can be checked on Nisnevich squares, and filtered colimits
commute with finite limits in Spc, the subcategory of Nisnevich sheaves is closed under filtered
colimits. By cofinality, the colimit above sends any presheaf F to a Nisnevich sheaf LMot(F ).
Since the category of A1-invariant presheaves is closed under all colimits, the same argument
shows that LMot(F ) is also A1-invariant. We conclude that LMot factors through Spc(S). As
Map(LMotF,X)→ Map(F,X) is an equivalence for any motivic space X ∈ Spc(S), this identifies
LMot as the left adjoint to the inclusion. □

Corollary 2.2.6. The image of LMot : SmS → Spc(S) consists of compact objects, which
generate Spc(S) under small colimits. In particular, Spc(S) is compactly generated and Spc(S)ω
is the smallest full subcategory of Spc(S) containing LMot(SmS), which is closed under small
colimits in Spc(S).

Proof. LMot preserves compact objects, because its right adjoint preserves filtered colimits. □

2.2.1. Pointed motivic spaces. We equip the category of pointed motivic spaces

Spc(S)∗ := Spc(S)∗/ ≃ Spc(S)⊗PrL Spc∗
with the smash product X ∧ Y := cofib(X ∨ Y → X × Y ). Then, Spc(S)∗ is a presentably
symmetric monoidal category, i.e. Spc(S)∗ is presentable and the the smash product commutes
with small colimits in each variable.

2.2.2. A1-homotopy. Given a map H : X×A1 → Y in SmS and two S-points a, b : S → A1. Then

the maps X
(idX ,a)−−−−−→ X × A1 and X

(idX ,b)−−−−→ X × A1 are inverses to the equivalence A1 ×X → X
in Spc(S). We conclude

Lemma 2.2.7. The maps Ha : X → Y and Hb : X → Y are equivalent in Spc(S).

2.3. Motivic Spheres. The following are some of the most important examples of motivic
spaces. We will perform a few computations to get a better feel for A1-homotopy theory. To
begin, consider a diagram of schemes

V

U X
open imm.

We can compute the pullback of the above span as the open subscheme of V corresponding
to the preimage of U under the underlying map of sets V → X.

Let Gm denote the pointed S-scheme (A1 \ 0, 1). By the above principle, the following squares

Gm × Gm Gm × A1 Gm A1

A1 × Gm A2 \ 0 A1 P1

[1,x]

[x,1]

are pullback squares. Moreover, these are Nisnevich squares, so that after contracting A1 we
obtain pushout squares of motivic spaces:

Gm × Gm Gm Gm ∗

Gm A2 \ 0 ∗ P1

pr1

pr2 [1,1]

[1,1]
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Consider now the following diagram:

Gm Gm × Gm G

Gm Gm ∨ Gm Gm

∗ ∗ ∗

pr1

pr2

=

id∨col

col∨id

=

Computing first the horizontal pushouts yields the cospan

A
2 \ 0 ←− ∗ −→ ∗,

whose pushout is A2 \ 0. Conversely, if we first take the vertical pushouts, we obtain the cospan

∗ ←− Gm ∧ Gm −→ ∗,

whose pushout is Σ(Gm ∧ Gm). We have constructed equivalences of pointed motivic spaces

Σ(A1 \ 0) ≃ P1 and Σ(Gm ∧ Gm) ≃ A2 \ 0,

where A2 \ 0 is pointed at (1, 1) and P1 is pointed at [1, 1].

Definition 2.3.1. For integers d ≥ j ≥ 0, we define the (d, j)-motivic sphere as the pointed
motivic space

Sd,j := Sd−j ∧ G∧j
m .

Generalizing the above discussion via induction, we obtain the following basic examples of
motivic spheres.

Proposition 2.3.2. There are explicit equivalences of pointed motivic spaces

S2,1 = S1 ∧ Gm ≃ P1

and

S2n−1,n = Sn−1 ∧ Gn
m ≃ An \ {0}.

Applying S1 ∧ (−) to the latter equivalence yields

S2n,n ≃ S1 ∧ (An \ 0) = cofib(An \ 0→ ∗) ≃ cofib(An \ 0→ A
n).

2.4. Base Change. We will treat the following results more thoroughly when we will discuss
the motivic six functor formalism. For now it will be useful to have the following base change
results at hand: If f : T → S is a morphism of schemes then precomposition by the base change
functor

SmS → SmT , X 7→ X ×S T

defines a functor f∗ : P(SmT )→ P(SmS), which is right adjoint to the Yoneda extension

f∗ : P(SmS)→ P(SmT ), (X ∈ SmS) 7→ X ×S T.

The functor f∗ preserves A1-invariant Nisnevich sheaves, so we will also denote by

f∗ : Spc(T ) −→ Spc(S)

its restriction to motivic spaces. The left adjoint of f∗ is denoted f∗ and satisfies f∗ ◦ LMot ≃
LMot ◦ f∗. In particular, f∗(X) = T ×S X for all X ∈ SmS .

Lemma 2.4.1. The functor f∗ : Spc(S)→ Spc(T ) preserves finite products.

Proof. Since the motivic localization LMot preserves finite products the statement follows from
the analogous fact on the level of presheaves, see [Lur09, Proposition 6.1.5.2.]. □
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If f : T → S is smooth, then f∗ : P(SmS) → P(SmT ) is given by precomposition by the
forgetful functor SmT → SmS . Consequently, the forgetful functor Yoneda extends to a further
left adjoint f# : Spc(T )→ Spc(S) of f∗.

Proposition 2.4.2 (Nisnevich Separation). Let {fi : Ui → S} be a Nisnevich cover of a scheme
S.

(1) The family of functors {f∗
i : P(SmS) → P(SmUi

)} jointly detect Nisnevich (resp. mo-
tivic) equivalences;

(2) The family of functors {f∗
i : Spc(S)→ Spc(Ui)} is conservative.

Proof. (2) follows from (1). (2) follows immediately from (1). For (1), let h : F → G be a
morphism in P(SmS) such that each pullback f∗

i (h) is a Nisnevich (resp. motivic) equivalence.
For any finite tuple (i1, . . . , in) write

fi1,...,in : Ui1 ×S · · · ×S Uin −→ S

for the corresponding iterated fiber product. Each f∗
i1,...,in

(h) is a Nisnevich (resp. motivic)
equivalence as well.

Consider the augmented simplicial endofunctor C• → id of Fun(P(SmS),P(SmS)) whose n-th
term is

Cn =
⊔

i1,...,in

(fi1,...,in)# f∗
i1,...,in .

For every X ∈ SmS the colimit colim∆ C•(X)→ X is a Nisnevich covering sieve, hence for every
presheaf F the map colim∆ C•(F ) → F is a Nisnevich equivalence. By the 2-out-of-3 property
for Nisnevich (resp. motivic) equivalences, h is a Nisnevich (resp. motivic) equivalence if and
only if colim∆ C•(h) is such.

Finally, Nisnevich (and motivic) equivalences are stable under colimits, so the assumption
that each f∗

i (h) is an equivalence implies colim∆ C•(h) is an equivalence, and thus h itself is an
equivalence. This proves (1). □

2.5. Digression: Motivic Thom Spaces. Motivic Thom spaces are essential in motivic ho-
motopy theory, as they allow one to distinguish vector bundles over the same base even after
contracting A1, and they serve as fundamental building blocks for cohomology theories such as
algebraic cobordism.

Let Vect(SmS) denote the ordinary category of vector bundles and vector bundle morphisms
on smooth S-schemes. We view Vect(SmS) as a symmetric monoidal category via the external
product:

(E → X)× (E′ → Y ) 7−→ (E × E′ → X × Y ).

We equip the arrow category Fun([1],SmS) with the Day convolution symmetric monoidal struc-
ture, where the poset [1] is symmetric monoidal via the minimum function. By inspection, the
functor

Vect(SmS) −→ Fun([1],SmS), (E → X) 7−→ ((E −X)→ X),

admits a natural lax symmetric monoidal structure.

The Thom space functor Th(−) is then defined as the following composite of lax symmetric
monoidal functors:

Vect(SmS) −→ Fun([1],SmS) −→ Fun([1],Spc(S)) cofib−−−−→ Spc(S)∗.

Intuitively, for a vector bundle E → X, the motivic Thom space Th(E) is obtained from E by
collapsing the complement of the zero section to a point, i.e.

Th(E) ≃ E/(E −X),
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just as in classical topology. This construction generalizes the familiar topological Thom space
to the motivic world.

We denote by VectS ⊆ Vect(SmS) the full subcategory spanned by vector bundles over S itself.

Lemma 2.5.1. The lax symmetric monoidal composite

VectS ↪→ Vect(SmS)
Th−−→ Spc(S)∗

is symmetric monoidal.

Proof sketch. We need to check that for any two vector bundles E,E′ over S, the map

Th(E) ∧ Th(E′) −→ Th(E × E′)

is a motivic equivalence. Choose a Nisnevich cover of S on which both E and E′ trivialize. By
applying Proposition 2.4.2 to this cover, we can assume that both E and E′ are trivial bundles.
In this case, Proposition 2.3.2 factors the map under inspection into equivalences:

(A1/A1 − {0})∧n ≃ (S2,1)∧n ≃ S2n,n ≃ An/An − {0}

□

In fact, Vect(SmS)
Th−−→ Spc(S)∗ is symmetric monoidal as a slight adjustment of the previous

proof shows.

2.6. Motivic Spectra. Just as the category of spectra is obtained from pointed spaces by freely
inverting smashing with S1, we want to construct the category of motivic spectra from pointed
motivic spaces by freely inverting smashing with P1:

Definition 2.6.1. The category (SH(S),⊗) of motivic spectra is defined as the initial pre-
sentably symmetric monoidal category under pointed motivic spaces

Σ∞ : Spc(S)∗ −→ SH(S)

on which tensoring with the bigraded spheres Sd,j := Σ∞Sd,j defines an equivalence

Σd,j := S
d,j ⊗ (−) : SH(S)→ SH(S).

Notation 2.6.2. We write Ωd,j := (Σd,j)−1 and

S
−d,−j := Ωd,j(S)

for all d ≥ j ≥ 0. k-fold shifts by P1, Gm and Sk, respectively, will be denoted by subscripts,
e.g. Σk

P1 and Ωk
P1 .

Let’s unravel the definition:

Remark 2.6.3. Let C be presentably symmetric monoidal. Let F : Spc(S)∗ −→ C be a continu-
ous symmetric monoidal functor which sends all motivic spheres Sd,j to smash invertible objects.
Then, there exists a unique symmetric monoidal continuous functor SH(S)→ C making the di-
agram

Spc(S)∗

SH(S) C

Σ∞ F

∃!

commute.
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Construction 2.6.4. For any morphism of base schemes f : S → T there is a unique symmetric
monoidal continuous functor f∗ : SH(T )→ SH(S) equipped with an equivalence f∗Σ∞ ≃ Σ∞f∗

of functors Spc(T )∗ → SH(S). We denote the right adjoint of f∗ by f∗ : SH(S)→ SH(T ).

For proving a telescoping localization formula for motivic spectra we need the following
Lemma:

Lemma 2.6.5. The cyclic permutation (1, 2, 3) : (P1)∧3 → (P1)∧3 is homotopic to the identity
in Spc(S)∗.

Proof. Under the explicit equivalence (P1)∧3 ≃ cofib(A3 \ 0 → A3) from Proposition 2.3.2 the
swap action corresponds to the swap action of A3 (Because the motivic J-homomorphism is
symmetric monoidal). It suffices to write (1, 2, 3) : A3 → A3 as a composition of maps which each
is A1-homotopic to the identity via a homotopy that sends A1 × (A3 \ 0) to A3 \ 0.

To this end we factor the matrix encoding (1, 2, 3) into a product of integer valued elementary
matrices. For the elementary matrix E(a) with unique nonzero off diagonal entry a ∈ Z the
required A1-homotpy is given by

A
3 × A1 → A

3, (X, t) 7→ E(ta)(X).

□

Theorem 2.6.6. We let Spc(S)∗[(P1)−1] denote the colimit of the diagram

Spc(S)∗
P
1∧(−)−−−−−→ Spc(S)∗

P
1∧(−)−−−−−→ Spc(S)∗

P
1∧(−)−−−−−→ · · ·

computed in the category of presentable categories and left adjoint functors PrL. Then this colimit
is an idempotent algebra in left Spc(S)∗ modules in PrL and the canonical continuous symmetric
monoidal functor

Spc(S)∗[(P1)−1] −→ SH(S)
is an equivalence of categories under Spc(S)∗.

Proof. This is a categorification of the group completion theorem, see [Rob13]. This theorem is
applicable in our situation precisely because Lemma 2.6.5 holds. □

Remark 2.6.7. Since Σ∞ and ⊗ preserves colimits, the functor SH(S)→ SH(S) given by

ΣS1 := Σ1,1 = (Σ∞S1)⊗ (−) = colim(0← (−)→)

is equivalent to categorical suspension. We conclude that SH(S) is a stable category.

Corollary 2.6.8 (Motivic Spanier-Whitehead Category). The category of motivic spectra SH(S)
is compactly generated. Any compact motivic spectrum can be written as Ωn

P1Σ∞X for some
n ∈ N0 and some compact motivic space X ∈ Spc(S)∗. Moreover, for two compact pointed
motivic spaces X,Y ∈ Spc(S)∗ the map

colimn MapSpc(S)∗

(
(P1)∧n ∧X, (P1)∧n ∧ Y

)
−→ MapSH(S)(Σ

∞X,Σ∞Y )

is an equivalence.

Proof. By [Lur09, Chapter 5] the category of compact objects in the telescoping colimit

Spc(S)∗[(P1)−1] ≃ SH(k)

is the telescoping colimit of the category of compact objects; here the latter colimit is computed in
the category of small categories. The statement follows for the formula for objects and mapping
spaces in filtered colimits of small colimits. □
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Proposition 2.6.9. If f : S → T is a smooth morphism of base schemes, then f∗ : SH(T ) →
SH(S) admits a left adjoint f# : Sh(S)→ SH(T ) and the Bech-Chevalley transformations

f#Σ
∞ −→ Σ∞f# and f#ΣP1 −→ ΣP1f#

are equivalence of functors Spc(S)∗ → SH(T ) and SH(S)→ SH(T ), respectively.

Proof. We claim that the canonical map

f# ◦ (P1
S ∧ (−)) −→ (P1

T ∧ (−)) ◦ f#
is an equivalence of functors Spc(S)∗ → Spc(T )∗. Indeed, for any X ∈ SmS the map

X ×S (S ×Z P1) −→ X ×T (T ×Z P1)

is an isomorphism in SmT and we might pass to colimits in X. In light of Theorem 2.6.6 the
result follows from the claim by very general arguments, e.g. see [Neu25, 2.6.16]. Essentially, we
define an N parametrized category n 7→ Spc(S)∗ with transition maps given by smashing with
P1
S , and similarly for T . Now f∗ provides a parametrized functor between these two parametrized

categories. Because the Beck-Chevalley condition holds, we can pass to the parametrized left
adjoint, pointwise given by f#. Finally, we take colimits in N to get our required functor
f# : SH(S)→ SH(T ). □

2.7. Example: Motivic Thom Spectrum. Motivic Thom spectra provide a bridge between
algebraic vector bundles and stable motivic homotopy theory. Motivic Thom spectra are compa-
rably understandable, but are not too far from the motivic sphere to yield a good approximation.
The motivic Thom spectrum MGLS represents algebraic cobordism—for our purposes this is by
definition, though there are efforts to give a more geometric construction of algebraic cobordism.

We claim that the symmetric monoidal composite (see Lemma 2.5.1)

VectS ↪→ Vect(SmS)
Th−−→ Spc(S)∗

Σ∞

−−→ SH(S)
sends all vector bundles over S to smash-invertible motivic spectra. Indeed, given a vector
bundle E over S, we may choose a Nisnevich cover on which E trivializes. By the SH-analog
of Proposition 2.4.2 applied to that cover, we may assume that E is trivial. The Thom space
of a trivial bundle over S is given by a motivic sphere, which we forced to be invertible in the
construction of SH(S).

We view the ordinary groupoid VectS of vector bundles on S as a commutative monoid in
spaces. From the claim, we deduce that the above functor factors through a unique symmetric
monoidal functor

J : VectgrpS −→ SH(S),
where VectS → VectgrpS denotes the group-completion in CMon(Spc). This functor is called
motivic J-homomorphism.

Construction 2.7.1. When S = Spec(R), then VectgrpS is known as the algebraic K-theory
K(R) of R. When S is not affine, this is not true in general but [BH20, Bachmann-Hoyois,
16.1] show that J factors through the map VectgrpS → K(S) to algebraic (Thomason-Trobaugh)
K-theory.3

Finally, restricting this J-homomorphism to virtual vector bundles of virtual rank 0 gives the
motivic j-homomorphism

j : K(S)0 −→ SH(S),
where the map K(S)0 → K(S) is the fiber in CGrp(Spc) of the rank map

rank : K(S)→ Z,

3When I gave the talk, I ignored the difference between VectgrpS and K(S) = (Perf(S)core)grp.
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factoring the ordinary rank function rank : VectS → Z through the algebraic K-theory.
In the seminar talk, I presented the following as the motivic Thom spectrum. But this

definition is not quite big enough as I’ll explain in a second.

Definition 2.7.2. We define the preliminary motivic Thom spectrum as the colimit of the j-
homomorphism:

ThS(j) := colim
(
j : K(S) −→ SH(S)

)
∈ CAlg(SH(S)).

Note that the colimit of a symmetric monoidal functor naturally inherits a commutative algebra
structure, by equipping the colimit functor with a symmetric monoidal structure with respect to
Day convolution on the functor category.

By construction ThS(j) will have Thom isomorphisms for virtual vector bundles over the ter-
minal S-scheme. But this is not enough to obtain Thom isomorphisms for virtual vector bundles
over any smooth finite type S-scheme. This is then guaranteed by the following construction

Construction 2.7.3. Bachmann-Hoyois [BH20, Section 16] construct a functor

SmS → SH(S), (f : X → S) 7→ f# ThX(j)

manifesting the functoriality of the Thom spectrum construction. We define the motivic Thom
spectrum

MGLS := colim
f∈SmS

f# ThX(j).

Remark 2.7.4. Note that for a smooth S-scheme f : X → S and E ∈ VectX we have

f#j(E) = f# Th(E) = Th(E)

in Spc(S)∗. Unraveling the definition of the motivic Thom spectrum we obtain

MGLS = colim
f∈SmS

f# ThX(j) = colim
f∈SmS

f#

(
colim

E∈K(X)0
j(E)

)
≃ colim

f∈SmS , E∈K(X)0
f#j(E)

= colim
f∈SmS , E∈K(X)0

Th(E)

where we define Th(E) := f#j(E) for any virtual vector bundle E ∈ K(X)0, c.f. [BH20, Theorem
16.13.].

Remark 2.7.5. One can show that the canonical map

colimn Ω
n
P1Σ∞ Th(Vn) −→ MGLS

is an equivalence, where Vn is the tautological bundle on the infinite Grassmannian

Gr(n)S := colimk→∞ Gr(n, k)S

of n-planes, see [BH20, 16.13].

Remark 2.7.6. MGLS enhances to an E∞-algebra (even a normed motivic spectrum), see
[BH20, Section 16.1]. To this end, one identifies MGLS with the Smop

S -parametrized colimit of
the Smop

S -parametrized j-homomorphism. The latter is the natural transformation

j : K(−)0 ⇒ SH(−)

of the two functors Smop
S → Cat.
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3. Motivic Stable Stems

Definition 3.0.1. Let X ∈ SH(S) be a motivic spectrum and d, j ∈ Z. We define the motivic
stable homotopy groups as the abelian group of homotopy classes of maps

πd,j(X) := [Sd,j , X].

The i-th motivic stable stem is the graded abelian group

πi(S)j := πi−j,−j(S) = [Σ∞Si,Σ∞
G
j
m].

The 0-th motivic stable stem π0(S)∗ is a graded (non-commutative4) ring
Let us start by constructing an interesting element of π0(S)∗. In topological homotopy theory

the first interesting element of the stable stems is induced by the Hopf fibration η : C2\0 ≃ S3 →
CP1 ≃ S2. The canonical map η : A2 \ 0 → P1 also exists in the world of smooth S-schemes.
Under the explicit equivalence 2.3.2 this is send to a map

η : Σ(Gm ∧ Gm) ≃ S3,2 → ΣGm ≃ S2,1

of pointed motivic spaces. By suspending Σ∞ we view η as an element

η ∈ π0(S)−1

of the stable stems.
Say S = Spec(k) for k a field. Then we can construct a bunch of less interesting elements

of the motivic stable stems as follows: For any a ∈ k∗, we obtain a map ∗ → Gm of smooth
k-schemes. This yields a map S0 → Gm of pointed motivic spaces, i.e. an element

[a] ∈ π0(S)1.

Definition 3.0.2. Let k be a field. The graded ring KMW
∗ (k) called Milnor-Witt-K-Theory of k

is defined to be the quotient of the free non-commutative ring on generators [a] in degree 1 for
a ∈ k× and a generator η in degree −1, subject to the following relations

(1) η[a] = [a]η,
(2) [a][1− a] = 0 for a ∈ k \ {0, 1}, (Steinberg relations)
(3) [ab] = [a] + [b] + η[a][b],
(4) η(2 + η[−1]) = 0.

Remark 3.0.3. The graded ring KM
∗ (k) called Milnor K-theory of k is defined as the quotient

of KMW
∗ (k) by the central element η.

There is a natural map KM
∗ (k) → K∗(k) to algebraic K-theory, which is an isomorphism in

degree 0, 1 and 2, but not for larger degrees, in general.

Theorem 3.0.4 (Morel). Let k be a field. The 0-th motivic stable stem π0(S)∗ is via the elements
constructed above isomorphic to Milnor-Witt K-theory KMW

∗ (k).

4. Strict A1-invariance

Given a Nisnevich sheaf of abelian groups A then we can compute its n-fold deloping K(A,n)

in the topos ShNis(SmS). For any smooth scheme X ∈ SmS the group π0 Map(X,K(A,n)) :=
[X,K(A,n)] computes the sheaf cohomology group Hn

Nis(X;A) of X with coefficients in A. When
n = 1, this remains true for a sheaf of not-necessarily-abelian groups G and then

[X,BG] = H1
Nis(X;G)

is the group of G-torsors on X with respect to the Nisnevich topology.

4Morel proved that π0(S)∗ is commutative up to multiplication by an element denoted ϵ.
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If A is A1-invariant then we can compute

H0
Nis(X;A) ∼= [X,A] ∼= [LA1X,A]Spc(k)

in the much nicer category Spc(k) of motivic spaces. Wouldn’t it be nice if we could also compute

Hn(X;A) ∼= [X,K(A,n)]
?∼= [LA1X,K(A,n)]Spc(k).

in the category Spc(k) of motivic spaces, i.e. wouldn’t it be nice if

Hn(X × A1;A)→ Hn(X;A)

was an isomorphism for all n ∈ N. This is taken care of by the following (difficult) theorem:

Theorem 4.0.1 (Morel). Let k be a perfect field and A a Nisnevich sheaf of abelian groups on
Smk. Then, the following are equivalent

1) For n = 0, 1 and any X ∈ SmS the map Hn(X×A1;A)→ Hn(X;A) is an isomorphism.
(In this case A is called strongly A1-invariant)

2) For all n ∈ N and any X ∈ SmS the map Hn(X×A1;A)→ Hn(X;A) is an isomorphism.
(In this case A is called strictly A1-invariant)

Example 4.0.2. For any n ∈ N1 consider the sheaf GLn : Smop
k → Grp represented by the linear

algebraic group GLn. Since every Zariski GLn-torsor is representable, every such torsor defines
a Nisnevich sheaf, and therefor a torsor in the Nisnevich topology on Smk. Conversely, it is a
theorem that any Nisnevich GLn-torsor trivializes Zariski locally. We conclude that GLn-torsor
in the Zariski topology are canonically in bijection with GLn-torsor in the Nisnevich topology:

H1
Nis(−,GLn) ∼= H1

Zar(−,GLn).

In particular, for Gm = GL1 we obtain the Picard group

H1
Nis(X;Gm) ∼= H1

Zar(X;Gm) ∼= Pic(X)

as sheaf cohomology of any smooth k-scheme X ∈ Smk. It is not hard to see that Gm is
A1-invariant as we can compute the units R[t]× = R× for any regular ring R. The sheaf
Pic(−) ≃ K(Gm, 1) is also A1-invariant on smooth k-schemes (this follows from a nontrivial
result in commutative algebra). By the above theorem 4.0.1 of Morel, it then follows that
Hn

Nis(−,Gm) is A1-invariant for all n ∈ N.
In fact, if k is a perfect field, and X ∈ Smk is an affine smooth scheme, the canonical map

[X,BGLn]ShNis(Smk) → [X,LA1BGLn]Spc(k)

is an isomorphism. By the previous discussion, this group is equal to H1
Zar(X,GLn) the set of

isomorphism classes of rank n projective modules over the global sections of X.

5. Homotopy Sheaves

The number one tool for unstable motivic homotopy theory are the homotopy sheaves.

Definition 5.0.1. Let X ∈ ShNis(SmS). Then π0(X) ∈ ShNis(SmS ; Set) is defined as the
Nisnevich sheafification of the presheaf U 7→ π0(X(U)).

If (X,x) ∈ ShNis(SmS)∗ is a pointed Nisnevich sheaf, then πn(X,x) ∈ ShNis(SmS ; Grp) is defined
as the Nisnevich sheafification of the presheaf U 7→ πn(X(U), x(U)).

Remark 5.0.2. The homotopy sheaves arise from the Postnikov tower of the topos ShNis(SmS) in

the sense of [Lur09, 6.5.1]. If S has finite Krull dimension then ShNis(SmS) has finite homotopical
dimension, so the homotopy sheaves jointly detect equivalences. Moreover, Postnikov towers
converge.
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To simplify the theory we assume that S = Spec(k) is the spectrum of a field. Let us cite are
hard theorem due to Morel:

Theorem 5.0.3. If X ∈ Spc(k)∗ then π1(X,x) is strongly A1-invariant.

By the following corollary we can set up obstruction theory (k-invariants, ...) in Spc(k)∗ just
as we are used to in Spc:

Corollary 5.0.4. Let k be a perfect field.

1) If X ∈ Spc(k)∗ then πn(X,x) is strictly A1-invariant for all n ≥ 2.
2) Let X ∈ Spc(k)∗ be connected. Then for every n ≥ 1 the sheaf X≤n is A1-invariant.

Proof. (1): By Theorem 5.0.3 the sheaf πn(X) ∼= π1(Ω
n−1X) is a strongly A1-invariant sheaf of

abelian groups. By Theorem 4.0.1 it is strictly A1-invariant. (2): Inductively apply Lemma 5.0.5
below to the fiber sequence K(πn+1(X), n+ 1)→ X≤n+1 → X≤n. □

Lemma 5.0.5. Let F → E → B be a fiber sequence in ShNis(Smk)∗ with B connected and
A1-invariant. Then F is A1-invariant if and only if E is A1-invariant.

Proof. We have a morphism of fiber sequences with c an equivalence:

F E B

F (−× A1) E(−× A1) B(−× A1)

a b c

Since B is connected a is an equivalence if and only b is an equivalence [Lur09, Lemma 6.2.3.16.].
□

Here is another fact which I want to leave here for general culture:

Theorem 5.0.6 (Morel, Unstable Connectivity Theorem). If X ∈ ShNis(Smk) is n-connected
then so is LMot(X).

6. Homotopy t-structure

The homotpoy t-structure is a t-structure on SH(S) over a general base scheme. The homo-
topy t-structure is not the only t-structure on versions of SH(S) that is used in practice (e.g.
Chow t-structure). The homotopy t-structure is good for “standard connectivity business” like
convergence of the Adams Novikov spectral sequence for bounded below objects. Morally, the
homotopy t-structure is the t-structure on SH(S) compatible with homotopy sheaves. By anal-
ogy the homotopy t-structure should behave like the standard t-structure on spectra. In fact,
the real Betti realization BeR : SH(R)→ Sp is t-exact.

Let SH(S)≥0 denote the full subcategory of SH(S) generated under small colimits and ex-
tensions by

{Σk
Gm

Σ∞
+ X : X ∈ SmS and k ∈ Z}.

By [Lur12, 1.4.4.11] SH(S)≥0 is the connective part of a unique t-structure on SH(S), called
the homotopy t-structure.

Lemma 6.0.1. Let f : T → S be a smooth morphism, then f∗ : SH(S)→ SH(T ) is t-exact.

Proof. We need to prove that f∗(SH(S)≥0) ⊆ SH(T )≥0 and f∗(SH(S)≤0) ⊆ Sh(T )≤0. The first
inclusion follows because for all X ∈ SmS we have

f∗(Σk
Gm

Σ∞
+ X) ≃ Σk

Gm
Σ∞

+ (X ×S T ).
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By adjunction, the inclusion f∗(SH(S)≤0) ⊆ Sh(T )≤0 is equivalent to the inclusion f#(SH(T )≥0) ⊆
SH(S)≥0. But, for any X ∈ SmT and k ∈ Z we have an equivalence

f#(Σ
k
Gm

Σ∞
+ X) ≃ Σk

Gm
Σ∞

+ f#(X) = Σk
Gm

Σ∞
+ X

in SH(S). □

The following theorem explains the name of the homotopy t-structure:

Theorem 6.0.2 (Morel’s Connectivity Theorem). Let k be a field and E ∈ SH(k). Then

(1) E ∈ SH(k)≥d if and only if the homotopy sheaf

πp,q(E) := π0

(
Ω∞Σ−p,−qE

)
is zero for all p− q < d.

(2) E ∈ SH(k)≤d if and only πp,q(E) = 0 for all p− q > d.

Proof Sketch. Consider the class of spectra E such that πp,q(E) = 0 for p − q > 0. This class
is closed under colimits and extensions, and thus defines the connective part of a t-structure
on SH(k), which we denote by T . The non-connective part of this t-structure is given by the
right-hand side of (2) (we black-box this fact).

It then suffices to prove the implications from left to right in (1) and (2).
For (1), take any F ∈ SH(k)≥0. By closure under extensions and colimits, we may assume

F = Σk
Gm

Σ∞
+ X for some X ∈ Spc(k). We must show that [F,E] = 0 for every T -negative E.

Finally, being T -negative is equivalent to having Ω∞Σk
Gm

(E) ≃ ∗ for all k ∈ Z, by conservativity
of homotopy sheaves.

For (2), let E ∈ SH(k)≤−1, i.e., [F,E] = 0 for all F ∈ SH(k)≥0. Letting F run through all
Σk
Gm

Σ∞
+ X shows that Ω∞Σk

Gm
(E) ≃ ∗, so E is T -negative. □

7. Appendix: Betti Realization

Construction 7.0.1 (Sketch). Equipping the C-points of a finite type smooth R-scheme with
the analytic topology defines a functor of ordinary categories

SmR → TopC2 , X 7→ X(C)an

where the C2-action comes from complex conjugation. Here TopC2 denotes a nice enough full
subcategory of the ordinary category of topological spaces equipped with a C2-action and C2-
equivariant maps (e.g. the category of C2-CW-complexes). Let TopC2 → SpcC2

be the Dwyer-
Kan localization to genuine C2-spaces, i.e. the localizations at maps which induce homotopy
equivalences on C2-fixed points, as well as, on underlying spaces. Then the composite

SmR → TopC2 → SpcC2

satisfies Nisnevich descent. Indeed, one checks that Nisnevich squares are send to pushouts
squares of topological spaces with a cofibrant leg in the the genuine model structure on TopC2 .
We obtain a unique colimit preserving functor ShNis(SmR) → SpcC2

extending the previous
construction. The latter functor also preserves products as SmR → SpcC2

and LNis do. Note

that A1 ∈ SmR is send to C ∈ SpcC2
equipped with the conjugation action. This genuine

C2-space is C2-equivariantly contractible.

Definition 7.0.2. Hence, we can define the Betti realization as the unique colimit preserving
functor

Be : Spc(R)→ SpcC2

extending SmR → SpcC2
, X 7→ X(C)an along the Yoneda embedding. The composite functor

BeR : Spc(R)→ SpcC2

(−)C2

−−−−→ Spc
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is called real Betti realization. The composite functor

BeC : Spc(R)→ SpcC2

Res
C2
1−−−−→ Spc

is called complex Betti realization.

Notation 7.0.3. We don’t change notation for the induced continuous symmetric monoidal
functors Spc(R)∗ → Spc(C2),∗

Example 7.0.4. For any X ∈ SmR we have BeR(X) = X(R)an the space of R-points equipped
with the euclidean topology. For example BeR(Gm) ≃ S0 and BeC(Gm) ≃ S1. More generally,
BeR(S

d,p) ≃ Sd−p while BeC(S
d,p) ≃ Sd.

Because the functors LA1 and ShNis(SmR) → SpcC2
preserves products, Betti realization

preserves products as well.

Lemma 7.0.5. The C2-space Be(Gm) ≃ Sτ is equivalent to the representation sphere of the
tautological orthogonal C2-representation τ .

We conclude that the symmetric monidal composite functor

Spc(R)∗
Be−→ SpcC2,∗

Σ∞

−−→ SpC2
:= SpcC2,∗[(S

1)∧−1, (Sτ )∧−1]

factors through a unique continuous symmetric monoidal functor

Be : SH(R)→ SpC2
with Be◦Σ∞

+ ≃ Σ∞
+ ◦ Be .

Definition 7.0.6. We define real Betti realization as the composite

BeR : SH(R)→ SpC2

ΦC2

−−−→ Sp

of Betti realization with geometric fixed points. The composite functor

BeC : SH(R)→ SpC2

Res
C2
1−−−−→ Sp

is called is called complex Betti realization.

Let ρ denote the morphism {±1} → Gm in Spc(R)∗. Then, ρ becomes an equivalence after
real Betti realization. Tom Bachmann proved that the induced functor

BeR : SH(R)[ρ−1]
≃−−→ Sp

is an equivalence. We conclude that for any E ∈ SH(R) and p− q ∈ Z:
πp−q(BeRE) ∼= [Σ∞Sp−q, E[ρ−1]]SH(R) = [Σ∞Sp−q, colimn≥q G

⊗n−q
m ⊗ E]

= colimn≥q πp−n,q−n(E)(∗). (2)

Proposition 7.0.7. The functor BeR : SH(R)→ Sp is t-exact for the homotopy t-structure on
SH(R).

Proof. This follows from Morel’s connectivity theorem and the previous Equation (2). □
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