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1. Introduction

Example 1.0.1. Consider a smooth R-manifold M . Let f : M → ∗ be the map to the point,
which participates in the 6ff of sheaves on locally compact topological spaces. It turns out that
the dualizing sheaf

f !(S) ∈ Sh(M ; Sp)

lies in the image of the fully faithful functor Fun(M, Sp) ↪→ Sh(M,Sp) (this functor picks out
the locally constant sheaves, see [Cla25, Theorem 5.8.].) In fact, f !(S) identifies with the functor

STM : M → Sp, m 7→ Σ∞ (TmM/(TmM \ 0))
that sends a point m to the suspension spectrum of the one-point compactification of the tangent
space at m. Because f is 6ff-smooth, the left adjoint f# of f∗ is given by f!(f

!(S)⊗ (−)). Note
that f# restricts to the colimit functor Fun(M, Sp) → Sp. Hence, plugging in S ∈ Sh(M ; Sp)
into f# we obtain Atiyah duality:

Σ∞
+ (M) ≃ f#(S) ≃ f!(S

TM ) = Γc(M ;STM ) ∈ Sp .

If M is R-orientable, i.e. STM ⊗ R ≃ R[d], then base-changing the above equivalence to R-
coefficients yields Poincare duality:

Hd−∗(M ;R) ≃ H∗
c (M ;R).

Goal: Generalize the previous example to certain smooth F -analytic Artin stacks X, for
a local field F . For example, if X = BG is the classifying stack of a p-adic Lie group G,
our discussion will lead to Poincare duality for the continuous group homology of G with Sp-
coefficients.
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2 FABIO NEUGEBAUER

We start by setting up the six functor formalism.

2. The six functor formalism for étale sheaves

2.1. Construction of the 6ff.

Recollection 2.1.1. Recall that for X ∈ CondAnlight we defined Shv(X) := CondAnlight/X as

slice category. Moreover, Shet(X) ⊆ Shv(X) is the full subcategory spanned by étale maps to
X.1

Definition 2.1.2. Let C be a compactly-generated presentable category. We define

Shet(X; C) := Shet(X)⊗ C and Shv(X; C) := Shv(X)⊗ C .

[Lur12, Proposition 4.8.17] describes an isomorphism

X ⊗ C −→ Funlex((Cℵ0)op,X ) (1)

naturally those functors X → Y of presentable categories which preserve colimits and finite
limits. Thus, we can reduce the following statements to C = An.

Lemma 2.1.3. Let C be a compactly-generated2 presentable category.

(1) The functor Shet(X; C)→ Shv(X; C) is fully faithful.

(2) The functors X 7→ Shet(X; C) and X 7→ Shv(X, C) from CondAnlight to PrL preserves
arbitrary limits.

(3) Let X ∈ CondAnlight. A map F → G in Shet(X; C) is an isomorphism in and only if
x∗ F → x∗ G is an isomorphism for all x : ∗ → X

Proof. The case of C = An has been proven in Kaif’s talk. □

Remark 2.1.4. Part (2) implies that X 7→ Shet(X; C) is right Kan extended from

Proℵ0(Fin)
op → C, S 7→ Sh(S).

This is precisely the construction that we discussed in talk 4 and talk 5, i.e. for any E∞-ring Λ
we introduced the notation

Shet(−;ModΛ) = D(−,Λ) : (CondAnlight)op → Cat .

in [HM24].

Lemma 2.1.5. Let f : T → S be a map of light profinite sets. Then, the right adjoint
f∗ : Shet(T, Sp)→ Shet(S, Sp) to the pullback f∗ of étale sheaves preserves all colimits, satisfies
the projection formula and commutes with base-change along any map of light profinite sets.

Proof. We have seen this in the context of [HM24] via the identification Shet(S,Sp) = ModΓ(S;Sp).
We also have seen this in the context of the 6ff of sheaves on compact Hausdorff spaces, via the
identification Shet(S; Sp) = Sh(S, Sp). □

Remark 2.1.6. For any compactly-generated R ∈ CAlg(PrLst) if we tensor this Lemma with R
we deduce the analogous lemma for R-valued étale sheaves.

1Recall that f : X → Y is called étale if for any profinite set S the pullback of f along any map g : S → X
lies in the image of the fully faithful functor δS : Sh(S) → Shv(S).

2By passing to retracts in PrL we can generalize this Lemma to compactly-assembled presentable coefficient
categories C, e.g. sheaves on the real line.
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Construction 2.1.7 (The 6ff). We obtain a unique six functor formalism on Proℵ0(Fin) such
that the underlying functor is Shet(−,R) and every map is proper (in particular, all maps f
are !-able and f! = f∗.) We apply [HM24, Theorem 3.4.11.] to construct a favorable class of

morphisms E in CondAnlight together with a sheafy extension

M : SpanE(CondAnlight) −→ PrL

of our six functor formalism to light condensed anima.

In particular, the underlying functor of our six functor formalism identifies with Shet(−,R).

Definition 2.1.8. We call morphisms in E R-!-able. We call a morphism f of condensed anima
R-suave (R-smooth, R-étale, R-prim, R-proper) if it is suave (smooth, étale, prim, proper) for
this 6ff.

Remark 2.1.9. The class of maps E is produced by starting with the class E0 of maps of
light condensed anima whose every pullback to a light profinite set is light profinite, and then
iteratively extending E0 by two simple extension procedures (and, finally, taking the union over
the chain of all previously constructed classes of maps). The extension procedures are as follows:

(1) Given a class of maps E′, enlarge to E′
! , the class of maps which are !-locally on the

source in E′.
(2) Given a class of maps E′, enlarge it to E′

∗, the class of maps such that each pullback to
a light profinite set lies in E′.

Remark 2.1.10 (Change of Coefficients). Suppose that R → R′ is a morphism in CAlg(PrLst),
where both R and R′ are compactly generated. Then, an R-!-able morphism is R′-!-able.
This follows by induction on Remark 2.1.9 using in each step that a R-!-cover is also a R′-!-cover
because −⊗R R′ preserves colimits.
We conclude that if we restrict the R′-valued 6ff to the R-!-able maps we obtain the coefficient-
change M ⊗R R′ of the R-valued 6ff M . In particular, if f is R-smooth (R-etale, ...), then it is
R′-smooth (R′-étale,...).

Remark 2.1.11. Let X be a topological space, such that each point admits a secound-countable
compact Hausdorff neighborhood. Then, Shet(X) is the Postnikov completion of Sh(X), see
[Cla25, Lemma 4.20]. If X is of finite covering dimension, then Sh(X) is already Postnikov
complete. In particular, Shet(M) = Sh(M) for any F -manifold M and locally compact field F .
Finally, Adam’s uniqueness theorem for 6ffs implies that the etale sheaf 6ff Shet(X;R) restricted
to such spaces X agrees with the Postnikov-completed sheaf 6ff Ŝh(X;R).

In what follows, we will be interested in Shet(BG;R), so we will have to leave the realm of
topological spaces.

2.2. Examples of étale maps.

Proposition 2.2.1. Any truncated etale map f : X → Y of light condensed anima is Sp-etale.
In particular, this holds for local homeomorphisms (e.g. open inclusions) of topological spaces.

Lemma 2.2.2. For every light profinite set S and clopen subset f : U ⊆ S, the inclusion U → S
is Sp-étale.

Proof Sketch. When U is clopen, then f is proper. Moreover, Sh(S, Sp) = Sh(S − U,Sp) ×
Sh(U,Sp) and f∗ is the projection. Thus, the left and right adjoint of f∗ identify with 0 × id.
So, f∗ is the right adjoint of f∗ = f!. Hence, f ! = f∗ and one can check that this identification
is induced by correct natural transformation. Note that ∆f is an isomorphism. □
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Proof of Proposition 2.2.1. A map is Sp-étale if its Sp-étale after pullback to an arbitrary light
profinite set. Thus, we can assume that Y is a light profinite set. We proceed by induction on the
truncation of n. Suppose we know the result for n and f is n+1-truncated. Because f : X → Y
is etale we can find a collection of clopen subsets Ui ⊆ Y and local sections si : Ui → X of f ,
which are jointly surjective.
Indeed, we have an explicit identification f ∈ et/Y = Shet(Y ) = Sh(Y ), so that f = colimi Ui

for some clopen sets Ui of Y , as clopen sets generate Sh(Y ) under colimits (they are a basis for
the topology on Y ). The map Ui → f in et/Y yields the section si : Ui → Y of f . The colimit
formula translates to the si being jointly surjective. The following diagram

Ui X

Ui ×Y X X ×Y X X

Ui X Y

di ∆f

mi

si f

consists of pullback squares. Because ∆f is n-truncated and étale, it is Sp-etale by induction.
The inclusion Ui ↪→ Y is Sp-etale by Lemma 2.2.2. Hence, also si = mi ◦ di : Ui → X is is
Sp-etale. We conclude that {si : Ui → X} is a jointly surjective Sp-étale cover and therefore
detects Sp-etaleness. But the composite Ui → Y is Sp-etale by Lemma 2.2.2. □

2.3. Examples of proper maps. Recall the following criterion for properness:

Lemma 2.3.1 ([HM24, Cor. 4.7.5]). Let R serve as coefficients for our 6ff on CondAnlight.
Let g : X ′ → X be an R-proper map. Suppose g∗ 1 ∈ CAlg(Shet(X;R)) is descendable and
f : X → Y is truncated. Suppose f ◦ g is R-proper, then f is proper.

Even though we already have seen a version of the following theorem (modulo Postnikov-
completion) when we discussed sheaves on compact Hausdorff spaces, we are interested in its
proof.

Theorem 2.3.2. Suppose X is a light condensed anima such that either:

(1) X is a second-countable compact Hausdorff space of finite cohomological dimension (i.e.
there is a d ∈ N such that for all M ∈ Shet(X;D(Z))) concentrated in degree 0, we have
Γ(M) ∈ D(Z)≥−d); or

(2) X is a 1-truncated light profinite anima of finite cohomological dimension. (light profinite
anima = countable inverse limit of π-finite anima). For example, X = BG for a light
profinite group of finite cohomological dimension and, as explained in Kaif ’s talk, X =
BH the relative classifying stack of a relative uniform pro-p-group over a p-adic manifold.

Then, the map
f : X → ∗

is Sp-proper.

Proof. There exists a light profinite set and a surjection g : S ↠ X, such that for any T → X
with T ∈ Proℵ0(Fin) the fiber product T ×X S is also a light profinite set.
(Every compact metric space is a quotient of a Cantor space, see nlab article on Cantor spaces.
In case (2), g is constructed inductively along the sequential inverse limit, as in [Cla25, 4.23.])
Because any map of light profinite sets is proper, f ◦ g and g are proper. We need to show that
g∗(1) ∈ Shet(X,Sp) is descendable.
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Let’s blackbox [Cla25, Theorem 6.21] stalkwise criterion for descendability: If Shet(X,Sp)
is countably assembled and rigid andX has finite cohomological dimension, then A ∈ Shet(X,Sp)
is descendable if and only if there is N ∈ N such that for all maps x : ∗ → X, the pullback x∗A
is descendable of index ≤ N .
Using finite cohomological dimension a certain composite of A-null maps will be phantom. By
countable-assembly a composition of 2 phantom maps is null.
Let’s believe without proof3 that Shet(X,Sp) is countably-assembled and rigid, so that the black-
box applies. Hence, the theorem follows from the following Lemma 2.3.3. □

Lemma 2.3.3. Let g : S → X be a R-proper, surjective map of condensed anima. Then, for all
x : ∗ → X the algebra x∗g∗(1) ∈ R is descendable of index ≤ 1.

Proof. By proper-base change x∗g∗(1) = (gx)∗ 1 for gx : g−1(x) → ∗. Since g is surjective,
g−1(x) is nonempty. Any nonempty condensed anima admits a point4, so gx admits a section.
This section induces a section of the unit map S → (gx)∗S, and thus (gx)∗ 1 is descendable of
index ≤ 1. □

Remark 2.3.4. If X → ∗ is D(Z)-proper, then X has finite cohomological dimension.

Corollary 2.3.5. Let f : X → Y be a map in CondAnlight. If {Yi → Y }i∈I is a jointly surjective
family of maps to Y and X ×Y Yi → Yi is !-able for all i, then f is !-able. The same holds for
the classes of R-proper, R-smooth, and R-étale maps.

Proof. The same argument as in Theorem 2.3.2 shows that for any surjective map f : T ↠ S of
light profinite sets f∗S is descendable in Shet(S,Sp). By [HM24, 4.7.4.], f is a universal !-cover.
Finite disjoint unions are also !-covers by Lemma 2.2.2. Hence, every cover of a light profinite
set by light profinite sets is a !-cover.

To prove the corollary we can assume that Y is a light profinite set, as these notions can be
checked after pullback to such. For each i ∈ I we choose a jointly surjective family {Si,j → Yi}j∈Ji

with Si,j a light profinite set. Then, {Si,j → Y } is a jointly surjective family of maps of light
profinite sets, hence a !-cover. Thus, it suffices to check that the pullback X×Y Si,j → Si,j lies in
the respective class of maps. But this map is the pullback of X ×Y Yi → Yi along Si,j → Yi. □

2.4. Examples of !-able maps.

Corollary 2.4.1. Let f : X → Y be either

a) a map between topological spaces that admit a basis by second countable Hausdorff spaces
of finite cohomological dimension.

b) a representable map5 in Sh(ManF ) for some local field F .

Then f is Sp-!-able.

Proof. a): By cancellation it suffices to show that X,Y → ∗ are !-able. Open maps are smooth
and the cover is jointly conservative, so that we can assume that X satisfies the assumptions of
Theorem 2.3.2, so that X → ∗ is proper.
b): The case a) implies that any map of F -manifolds is !-able. Take a jointly surjective family
{Mi → Y } of F -manifolds. By Corollary 2.3.5 we can test after pullback to each Mi, but this
yields a map of F -manifolds. □

3For a second countable Hausdorff space X the category Shet(X; Sp) is the left completion of Sh(X; Sp)
4Qi’s argument: Say there is no map ∗ → X. Then, X(∗) = ∅ by Yoneda. Let S be light profinite. Then,

there is a map ∗ → S, which induces X(S) → X(∗) = ∅. So, X(S) = ∅, as well. (This works for any category of

sheaves on a site C where every object in C admits a map from the point.)
5For any F -manifold M the sheaf M ×Y X is represented by an F -manifold.
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3. Smooth Morphisms

We blackbox the following criterion for smoothness:

Lemma 3.0.1 ([Cla25, Prop. 8.4]). Let R ∈ CAlg(PrLst) be semi-rigid ( compactly-assembled
and the right adjoint of the tensor product preserves colimits and is R-linear.)(e.g. any rigid

category or Spp̂). Suppose a map f : X → S with S ∈ Proℵ0(Fin) is R-!-able. TFAE:

(1) f is R-smooth;
(2) f ! commutes with colimits and f !

1 is invertible.

Furthermore, if we just assume that f ! commutes with colimits, then the formation of f !-
commutes with base-change, so we can test invertibility of f !

1 locally on S.

The Lemma follows from [HM24, Lemma 4.5.4] and arguments (experts would call these

arguments standard) about base-change and linearity in PrL.

Theorem 3.0.2 (The Archimedean Case). (1) Suppose that f : X → Y is a (surjective)
representable submersion in Sh(ManR), then f is Sp-smooth (and a Sp-!-cover).

(2) For every R-analytic smooth Artin stacks X, i.e. there exists a surjective representable
submersion M → X with M ∈ ManR, the map X → ∗ is Sp-smooth.

Because !-able satisfy cancellation (are a geometric class), any map between R-analytic smooth
Artin stacks is Sp-!-able.

Rough Sketch. We descends to case of manifolds X,Y ∈ ManR via Corollary 2.3.5. On M ∈
ManR there is an equivalence Sh(M) → Shet(M) of 6ffs, see Remark 2.1.11, and we already
covered this when we discussed sheaves on topological spaces. Alternatively, one can descend all
the way to discs and then intervals via base change. On the interval it is a direct computation
using Lemma 3.0.1. □

Theorem 3.0.3 (The Non-Archimedean Case). Let X be a Qp-manifold, G→ X a group object
in submersions over X and BG→ X the relative classifying stack, i.e. the geometric realization
in Sh(ManQp

) of the action groupoid. Then:

(i) BG→ X is Spp̂-smooth.
(ii) If G → X is proper, i.e. preimage of a compact set is compact, and each fiber Gx is

p-torsion free, then BG→ X is Sp∧p -proper.

Proof Sketch. We start with (ii). By Corollary 2.3.5 we can assume thatX = S is a light profinite
set. By Lemma 2.3.1 applied to the diagram

id : S
e−→ BG→ S,

it suffices to check

• The quotient map e : S → BG (and the identity S → S)is Spp̂-proper; and
• e∗ 1 ∈ Shet(BG,Spp̂) is descendable.

The first point can be checked after pullback along S → BG, where it becomes the map G→ S.
The latter is proper, as proper maps of p-adic manifolds are Sp-proper, by Lurie’s proper-
basechange (for p-adic manifolds Shet(M) = Sh(M) by Remark 2.1.11). For the second point we
want to apply a p-adic version6 of Dustin’s stalkwise criterion for descendability [Cla25,
Remark 6.22.]. We need to check:

• e∗ 1 is stalkwise descendable of uniformly bounded index because e is a proper surjection,
see Lemma 2.3.3.

6Spp̂ is not rigid, but semi-rigid.
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• Shet(BG,Sp) is rigid and countably-assembled.
Sketch: Kaif explained that there is an etale surjection BH → BG, where H → S is a
fiber-wise uniform p-group. This reduces the statement to uniform p-groups, where we
can employ their structure theorem.

• BG has finite mod-p cohomological dimension.
By a general argument [Cla25, Remark 6.23], it suffices to check that the fibers of BG→ S
have uniformly bounded mod-p cohomological dimension. But the fibers are precisely
the Gs, which are compact p torsion-free p-adic Lie groups, by assumption. Serre proved
that these have finite mod-p cohomological dimension bounded by the dimension of Gs.
This gives a uniform bound as S is compact and dim(Gs) : S → N is continuous.

In our discussion of (i) we proceed similarly. Again, we can replace X by a light profinite set
S. Kaif explained ([Cla25, Proposition 5.15., 5.16.]) that there is an etale surjection BH → BG,
where H → S is a proper map and a fiber-wise uniform p-group. We can reduce to H = G
(!-ability and smoothness can be checked on jointly conservative smooth cover of the source, see
[HM24, 4.7.1, 4.5.8]). By Lemma 3.0.1, we need to show that f : BH → S is !-able, f !-preserves
colimits and f !

1 is invertible. We have seen in part (ii) that f is Spp̂-proper, thus !-able.

• f ! preserves colimits:
Because Shet(BH,Sp) is compactly generated (the structure theory of uniform pro-p
groups provides explicit compact generators), it suffices to check that f! = f∗ preserves
compact objects. We claim that f!S/p ∈ Shet(S, Spp̂) is compact and it turns out that
this is sufficient as the argument for the other explicit generators is the same. By a
classical theorem on uniform pro-p groups the morphism

Λi
Fp
H1f∗Fp −→ Hif∗Fp

is an isomorphism and the sheaf H1f∗Fp is isomorphic to (Fp)
dim(H) (Here dim(H) :

S → N is locally constant). Consequently, f∗(Fp) = f∗(S/p) ⊗ Fp is locally constant,
finitely generated and free. By finite cohomological dimension f∗S/p is bounded in the
t-structure. It turns out that any p-adic etale sheaf F ∈ Shet(S,Spp̂), which satisfies
these properties and is killed by some power of p, is compact, see [Cla25, Lemma 8.8].

• f !
1 is invertible:

Because f !S/p is bounded in the t-structure (uses that BH is an inverse limit of p-
finite anima of uniformly bounded cohomological dimension) we are left to prove that
f !Fp ∈ Shet(BH,Fp) is invertible (reduction by the general arguments in [Cla25, Lemma
8.8]). Shet(BH, (−) ⊗ Fp) is compactly generated by the unit (check what happens to
the explicit generators above under ⊗Fp), so

Modf∗Fp
(Shet(S,D(Fp))) −→ Shet(BH,D(Fp))

is an isomorphism, by the Schwede-Shipley theorem. Under this equivalence we can
identify the double right adjoint:

f ! = HomFp
(f∗Fp,−).

We need to show HomFp
(f∗Fp,Fp) is invertible as f∗Fp-module. But we calculated the

homotopy of f∗Fp as the exterior algebra on a locally free sheaf of finite rank dim(H) in
degree −1. Thus the claim follows from the self-duality (up to shift) of exterior algebras.

□

4. On nonstandard paths

Let F be a local field (think: F = R,C or F = Qp.) We have seen that certain maps of
F -analytic smooth Artin stacks f : X → Y are smooth (e.g. BG → M for relative p-adic
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Lie groups; or any map X → Y when F = R). We would like to identify f !(1). As in the
example discussed in the introduction this would produces an explicit Poincare duality formula
for the (relative) cohomology of X. Recall that in our R-manifold example the dualizing sheaf
f !(1) ∈ Pic(Shet(X,Spp̂)) identified with the Thomification of the relative tangent vector bundle.
We hope to generalize this fact to any smooth map f : X → Y of F -analytic smooth Artin stacks.
The strategy to relate the dualizing sheaf with tangent information is as follows:

The deformation to the tangent bundle, discussed in Daniel’s talks, yields a F×-equivariant
bundle over F ×X, hence, a sheaf F ∈ Shet(X × (F/F×),Sp). Its value at 0 roughly gives the
tangent bundle and its value at 1 allows us to compute the dualizing sheaf. So, we need the
following theorem:

Theorem 4.0.1. Let F be a local field and p a prime. Suppose given X ∈ CondAnlight and let
F ∈ Shet(X × (F/F×); Spp̂) be a tensor invertible sheaf.
Then, there is a natural isomorphism 0∗ F ≃ 1∗ F ∈ Shet(X; Spp̂).

Proof. We choose a map of condensed anima γ : I → F/F× with lifts 0, 1 : ∗ → I of 0, 1 ∈ F
(“a path from 0 to 1”) such that

pr∗ : Shet(X,Spp̂)→ Shet(I ×X,Spp̂)

is fully-faithful and any invertible sheaf lies in the essential image of pr∗. Then any invertible
sheaf F is of the form (pr∗)∗ F ′ so that

0∗ F = 0∗ pr∗ F ′ = F ′ = 1∗ pr∗ F ′ = 1∗ F .

The rest of the talk will be devoted to constructing such a path γ. □

Remark 4.0.2. When F = R or C, for any invertible F ∈ Shet(X × F ; Sp) there is a natural
isomorphism 0∗ F ≃ 1∗ F ∈ Shet(X; Sp). Indeed, Shet(X; Sp)→ Shet(X ×F ; Sp) is fully-faithful
and any invertible sheaf lies in the image. So the argument above applies.

4.1. Exotic Intervals. To start we discuss exotic intervals.

Definition 4.1.1. Let I ∈ CondAnlight and C ∈ CAlg(PrL) compactly-generated. We say that
I is a C-interval if f : I → ∗ is C-proper, f∗ : C → Shet(I, C) is fully-faithful and any invertible
sheaf F ∈ Shet(I, C) lies in the image of f∗.

[Cla25] doesn’t talk about C-intervals but a more general thing, he calls right C-blob. For our
purposes our ad-hoc definition of C-intervals is sufficient.

Lemma 4.1.2. Let I be a C-interval and let X ∈ CondAnlight. Then,

pr∗ : Shet(X; C)→ Shet(X × I, C)
is fully-faithful. Moreover, F ∈ Shet(X × I, C) is the in the essential image of pr∗ if and only if
for all x : ∗ → X the pullback of F along x× I : I → X is constant, i.e. pulled back from I → ∗.
Furthermore, any invertible sheaf F ∈ Shet(X × I, C) lies in the image of pr∗.

Proof. The first two statements are asking whether the unit (respectively, the counit) for pr∗ ⊣
pr∗ are isomorphisms. By Lemma 2.1.3 we can check on points x : ∗ → X. Let f : I → ∗. By
proper base change

x∗(1 −→ pr∗ pr
∗) ≃ (x∗ −→ f∗(x× I)∗ pr∗ ≃ f∗f

∗x∗) ≃ (1 −→ f∗f
∗) ◦ x∗.

and the unit 1 → f∗f
∗ is an isomorphism by assumption. Applying an analogous argument to

the counit we get the second statement. The last statement reduces to X = ∗, by the second
statement. □
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The Lemma implies the proof of Theorem 4.0.1 goes through for I an Spp̂-interval object.
The following example gives us sufficient supply of Spp̂-intervals:

Lemma 4.1.3. Let I be a second-countable compact Hausdorff space of finite cohomological
dimension such that

(1) f : I → ∗ induces an Fp-cohomology isomorphism and
(2) any continuous map I → BG to the classifying space of a finite group G is nullhomotopic.

Then, I is an Spp̂-interval.

Proof Sketch. By Theorem 2.3.2 f is Sp-proper. The functor f∗ is fully-faithful if and only if for
any A ∈ Spp̂, the unit A→ f∗(f

∗(A)) is an equivalence.
Recall that any exact functor g : C → D between stable categories with Postnikov complete

t-structure and g(τ≥0 C) ⊆ τ≥−d(D) preserves limits of Postnikov towers. We can apply this to
g = f∗f

∗ by our bounded cohomological dimension assumption. By properness of f the functor
g preserves colimits, so that we can reduce to A = Fp, where

π−∗(Fp → f∗(Fp)) = H∗(I → ∗,Fp)

is an isomorphism by hypothesis.
We are left to proving that any dualizable F ∈ Sh(I; Spp̂) the counit f∗f∗ F → F is an

equivalence. By a more involved version of the previous argument one can reduce to locally
constant sheaves of finite dimensional Fp-vector spaces. Because I is connected, such sheaves are
classified by a map I → BGLd(Fp), and hence are constant by assumption. □

4.2. The Required Nonstandard Path. We need to construct an Spp̂-interval I, a map of

condensed anima γ : I → F/F× and lifts 0, 1 ∈ F along γ. In the talk I drew a bunch of pictures.
I was to lazy to put them into the notes.

Let us start with K = {n ∈ Z} ∪ {∞}. As a topological space

K ∼= {1/n : n ∈ N≥1} ∪ {0} ⊆ R,
which is one of the pictures I drew.

Choose some q ∈ F with |q| < 1 so that

K → F, n 7→ qn

is continuous. Z acts on K by translating Z and the trivial action on∞. The above map restricts
to group homomorphism Z→ F× and K → F is Z-equivariant. We get induced maps

K/Z→ F/Z→ F/F×

of quotients (these quotients are computed as realization of action groupoid in condensed anima).
Now we enlarges K/Z to make it an interval object (its not representable by a topological

space yet, so our interval recognition criterion Lemma 4.1.3 doesn’t apply.) We need to make the
Z action free and properly discontinuous, to make the quotient quasi-seperated. Our first try is
X := (K × R)/Z where Z acts diagonally and by translation on R. Then, the action is free and
properly discontinuous, so that X is a space (compare [HM24, 5.3.8.]). Moreover, the obvious
projection X → K/Z is a surjective map of condensed anima.

To see what X looks like consider

K × R ∼= ∪n∈N≥1
({1/n} × R) ∪ ({0} × R) ⊆ R× R

Lets analyze what the Z action does to that subspace of R2. The Z action doesn’t leave {0}×R,
so we get a circle {0} × R/Z. All the other lines are identified to a helix growing out of that
circle. The helix speeds up more and more the closer it comes to the boundary circle {0} × R.
X admits a set decomposition into the closed subset {0} × R/Z (the circle) and an open subset
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homeomorphic R≥0 (the helix). The helix speeding up infinitely fast should remind you of the
topologists sine curve.

By cutting the helix off at (0, 1] ⊆ R>0 we get a compact Hausdorff space I ⊆ X, so that
I → F/F× still lifts 0 and 1.

As I still contains a circle, I has two much Fp-cohomology for our interval recognition criterion
Lemma 4.1.3. In a final step we glue in a solenoid

S := lim
n
(S1 (−)2←−−− S1 (−)3←−−− S1 (−)4←−−− S1 ← · · · )

along the projection S → S1 onto the first term in the inverse limit. We get a surjective projection
Ĩ ↠ I. (Formally, we taking inverse limit of copies of X along multiplications maps and then cut

the helix off to make it compact.) Now Ĩ has decomposition into a “boundary” closed subspace
homeomorphic to the solenoid and a open subset homeomorphic to (0, 1].

We claim that Ĩ is an Spp̂-interval object. Indeed, is a connected second countable compact
Hausdorff space (it is a countable inverse limit of such). Finally, for G a finite group any map
S → BG is null, because any map S1 → BG corresponds to an element ∗ → ΩBG = G of G.7

As this element is of finite order, it dies after passing along the inverse limit of the solenoid to a
high enough stage.

This convinced ourselves that the assumptions8 of Lemma 4.1.3 are satisfied for Ĩ. Conse-
quently, Ĩ is a Spp̂-interval object. The composite

γ : Ĩ ↠ I → X → K/Z→ F/F×

is our required nonstandard path, which makes the proof of Theorem 4.0.1 work.

References

[Cla25] Dustin Clausen. Duality and linearization for p-adic lie groups, 2025. URL: https://arxiv.org/abs/

2506.18174, arXiv:2506.18174. 1, 3, 4, 5, 6, 7, 8

[HM24] Claudius Heyer and Lucas Mann. 6-functor formalisms and smooth representations, 2024. URL: https:
//arxiv.org/abs/2410.13038, arXiv:2410.13038. 2, 3, 4, 5, 6, 7, 9

[Lur12] Jacob Lurie. Higher Algebra. 2012. 2

7Here we used the fact that any G-principle bundle P → limN S1 is pulled back from some S1, by compactness
of P .

8I left out some details, like finite cohomological dimension

https://arxiv.org/abs/2506.18174
https://arxiv.org/abs/2506.18174
https://arxiv.org/abs/2506.18174
https://arxiv.org/abs/2410.13038
https://arxiv.org/abs/2410.13038
https://arxiv.org/abs/2410.13038

	1. Introduction
	2. The six functor formalism for étale sheaves
	2.1. Construction of the 6ff
	2.2. Examples of étale maps
	2.3. Examples of proper maps
	2.4. Examples of !-able maps

	3. Smooth Morphisms
	4. On nonstandard paths
	4.1. Exotic Intervals
	4.2. The Required Nonstandard Path

	References

