
VERSIONS OF QUILLEN’S THEOREM A

FABIO NEUGEBAUER

In this essay, we use the language of ∞-categories. For us a category is an (∞, 1)-category.
The category of ∞-groupoids is denoted S.

1. Introduction

Scenario 1.1. In practice, we are often confronted with the following situation: We are given
a functor F : J → C and we desperately want to compute colimJ F . A plausible strategy is
choosing another functor f : I → J such that colimI(Ff) is computable. Then, we establish
that the canonical map colimI(Ff) → colimJ F is an equivalence.

To prove the latter, I “always” employ the following theorem of Quillen’s

Theorem (Quillen’s Theorem A). Let f : I → J be a functor between small categories. The
following are equivalent:

• For any cocomplete category C and any functor F : J → C the canonical map colimI(Ff) →
colimJ f is an equivalence.

• For all j ∈ J the slice Ij/ := I ×J Jj/ has contractible realization: |Ij/| ≃ ∗.

I was today’s years old, when I learned that employing Quillen Theorem A is often overkill in
Scenario 1.1. In many situations there is the following improvement:

Improvement 1.2 (R-linear Quillen’s Theorem A). Let f : I → J be a functor between small
categories and R an E1-ring. The following are equivalent:

a) For all presentably R-linear categories C and all functors F : J → C the canonical map
colimI(F ◦ f) → colimJ F is an equivalence.

b) For all j ∈ J the map |Ij/| → ∗ induces an isomorphism on R-homology.

In fact, we’ll deduce the R-linear Quillen theorem from the following specialized version of
Quillen’s theorem.

Theorem A (Specialized Quillen’s Theorem A, Theorem 3.5). Let f : I → J be a functor
between small categories and C a presentable category. Choose any small set {ck}k∈K of objects
of C, such that the functors {MapC(ck,−)}k∈K jointly detect equivalences. Then, the following
are equivalent:

a) For any functor F : J → C the canonical map colimI F ◦ f → colimJ F is an equivalence
in C.

b) For any j ∈ J and k ∈ K the canonical1 map

|Ij/| ⊗ ck → ck

is an equivalence in C.

From this specialized version of Quillen’s theorem we can also proof an “enriched” version.

Date: October 5, 2025.
1|Ij/| ⊗ ck is defined as the colimit of the constant functor |Ij/| → C with value ck.
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Definition 1.3 (Presentably R-linear categories). Let (R,⊗,1R) be a presentably monoidal
category. We say that a presentable category C is presentably R-linear if for any c ∈ C there is
a limit preserving functor R(c,−) : C → R together with a natural transformation making the
diagram

R

C S

MapR(1R,−)R(c,−)

MapC(c,−)

commute.

Example 1.4. The category R is presentably R-linear, because we can take R(c,−) to be the
right adjoint of (−)⊗R c : R → R.

Example 1.5. An R-enriched presentable category C is presentably R-linear if the enrichment
HomC(−,−) : Cop ×C → R preserves limits in the second variable.

Theorem B (R-linear Quillen’s Theorem A, Theorem 4.1). Let (R,⊗,1R) be a presentably
monoidal category and f : I → J a functor between small categories. Then, the following are
equivalent:

a) For any presentably R-linear category C and any functor F : J → C, the canonical map
colimI(F ◦ f) → colimJ F is an equivalence.

b) For any j ∈ J , the canonical map |Ij/| ⊗ 1R → 1R is an equivalence in R.

Example 1.6. Let R be an E1-ring. The R-linear version 1.2 of Quillen’s theorem A follows from
the R-linear version of Quillen’s theorem applied to the category of left R-modules R := LModR.

Example 1.7. Consider the presentably monoidal category (S≤n,×,1n) of n-truncated ∞-
groupoids and let f : I → J be a functor of small categories. For any j ∈ J we have

|Ij/| ⊗ 1n ≃ τ≤n(|Ij/|)
in S≤n. So, condition b) of the S≤n-linear Quillen theorem reduces to all slices Ij/ being n-
connected.

2. Generators of Presentable Categories

Proposition 2.1. Let C be a presentable category and let {ck}k∈K be a small set of objects in
C. Then the following conditions are equivalent:

a) The corepresented functors {MapC(ck,−)}k∈K jointly detect equivalences in C.
b) The category C itself is the smallest full subcategory of C, which is closed under small

colimits in C and contains the objects {ck}k∈K .

If these conditions are satisfied, we say that the set of objects {ck}k∈K generates C under small
colimits.

Proof. To prove b) ⇒ a) let f be a morphism in C so that the induced morphism of mapping
spaces MapC(ck, f) is an equivalence for all k ∈ K. Then the full subcategory of C spanned by
all c ∈ C for which the induced map MapC(c, f) is an equivalence is closed under colimits in C
and contains {ck}k∈C . By assumption b) the map MapC(c, f) is an equivalence for all c ∈ C. So
f is an equivalence itself by the Yoneda Lemma.

We first recall some preliminaries before we prove the implication a) ⇐ b). Because C is
presentable, we can choose a regular cardinal κ so that the objects {ck}k∈K are contained in the
full subcategory Cκ of C spanned by κ-compact objects, see [KNP24, Lemma 2.1.16.]. Moreover,
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the category Cκ is small and closed under κ-small colimits, see [KNP24, Lemma 2.1.16.] and
[Lur09, Theorem 5.5.1.1]. Let C0 be the smallest full subcategory of Cκ which contains the
objects {ck}k∈K and is closed under κ-small colimits in Cκ. Because the category Cκ is small so
is the category C0.

By [Lur09, Proposition 5.3.5.11] the unique κ-continuous functor p : Indκ(C0) → C extending
C0 ↪→ C is fully faithful. [Lur09, Corollary 5.3.5.4] identifies objects of the full subcategory
Indκ(C0) ⊆ P(C0) with κ-small limit preserving functors Cop

0 → S. Consequently, the restricted
Yoneda embedding

C → P(C0), c 7→ MapC(−, c)

factors through a functor y : C → Indκ(C0). We show that y is right adjoint to the functor
p : Indκ(C0) → C. To this end, we fix X in C. It suffices to show that the two functors
Indκ(C0) → Sop given by

MapIndκ(C0)(−, y(X)) and MapC(p(−), X)

are equivalent. As both of these functors preserve κ-filtered colimits, it suffices to construct an
equivalence after precomposition with the functor C0 → Indκ(C0). To this end we employ the
Yoneda Lemma to identify the following functors Cop

0 → S:

MapIndκ(C0)(y(−), y(X)) = MapP(C0)(y(−), y(X)) ≃ y(X) = MapC(−, X).

The upshot of this preliminary discussion is that the restricted Yoneda embedding y induces
a right adjoint of the fully faithful functor p. If condition a) is satisfied then the restricted
Yoneda embedding y is a conservative functor. It follows from the triangle identities that p is an
equivalence of categories. In particular, any object of C can be written as a κ-filtered colimit of
a functor taking values in C0. Condition b) follows now by unraveling the definition of C0. □

Examples 2.2. Here are some examples of generating sets of presentable categories:

• The category of n-truncated ∞-groupoids is generated under colimits by the terminal
object.

• The category of left modules over an E1-ring R is generated under colimits by desuspen-
sions of the unit {R[−n]}n∈N0 .

3. Specialized Quillen’s Theorem A

Lemma 3.1. Let C be a cocomplete category κ-compactly generated and c ∈ C an object. The
functor MapC(c,−) corepresented by c admits a left adjoint

−⊗ c : S → C, X 7→ colim
(
X → ∗ c−→ C

)
sending an ∞-groupoid to the constant colimit indexed by X.

Proof.

MapC(X ⊗ c, d) ≃ MapC(colimX c, d) ≃ lim
X

Map(c, d) ≃ MapS(X,Map(c, d))

□

Lemma 3.2. Let C be a cocomplete category, J a small category and j ∈ J an object. The
evaluation at j functor evj : Fun(J, C) → C admits a left adjoint j! : C → Fun(J, C). For any
c ∈ C the functor j!(c) is equivalent to the composite

J
MapJ (j,−)−−−−−−−→ S −⊗c−−−→ C . (1)
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Proof. The evaluation functor is given by precomposition along j : {j} → J . Left Kan extension
provides a left adjoint j! := Lanj to precomposition by {j} → J . By the pointwise formula for
left Kan extension we obtain an equivalence

j!(c)(i) ≃ colim
{j}×JJ/i

(
{j} ×J J/i → {j} c−→ C

)
≃ colim

MapJ (j,i)
const(c) = MapJ(j, i)⊗ c,

naturally in i. □

Lemma 3.3. Suppose a small set of objects {ck}k∈K generates a presentable category C under
small colimits. Let J be small category. Then, the functor category Fun(J, C) is presentable.
Moreover, the small set {

j!(ck) = Mapj(j,−)⊗ ck : j ∈ J, k ∈ K
}

generates the functor category Fun(J, C) under small colimits Fun(J, C).

Proof. The category Fun(J, C) is presentable by [Lur09, Proposition 5.4.4.3.]. Let f be a mor-
phism in Fun(J, C) such that the induced morphism of mapping spaces Map(j!(ck), f) is an
equivalence for all j ∈ J and k ∈ K. Applying the adjunction from Lemma 3.2, we conclude that
the morphism Map(ck, evj(f)) is an equivalence. Because the set of objects {ck}k∈K generates
C, the map evj(f) is an equivalence in C. By the pointwise criterion for equivalences in functor
categories, the morphism f is an equivalence itself. □

Lemma 3.4. Let f : I → J be a functor between small categories. Let C be a complete category
and j ∈ J and c ∈ C be objects. Then, the canonical map

colimI(j!(c) ◦ f) → colimJ j!(c)

is homotopic to the canonical map

|Ij/| ⊗ c → c.

Proof. In the factorization (1) of j!(c) the latter functor preserves colimits by Lemma 3.1. Thus,
it suffices to show that the canonical map of mapping spaces

colimI MapJ(j,−) → colimJ MapJ(j,−) (2)

is equivalent to |Ij/| → ∗. The colimit of an ∞-groupoid valued functor is computed by inverting
the morphisms of the unstraightening. The unstraightening of MapJ(j,−) : J → S is the
forgetful functor Jj/ → J . The unstraightening of the composite

I
f−→ J

MapJ (j,−)−−−−−−−→ S

is computed as the pullback of Jj/ along f . This identifies the map in Equation (2) with
|I ×J Jj/| → |Jj/|. Finally, |Jj/| is contractible because Jj/ has an initial object. □

Theorem 3.5 (Specialized Quillen’s Theorem A). Let f : I → J be a functor of small categories
and C a presentable category. Choose any small set of objects {ck}k∈K which generate C under
small colimits. The following are equivalent:

a) For any functor F : J → C the canonical map colimI F ◦ f → colimJ F is an equivalence
in C.

b) For any j ∈ J and k ∈ K the map |Ij/| ⊗ ck → ck is an equivalence in C.
c) For any j ∈ J and k ∈ K the canonical map colimI j!(ck) ◦ f → colimJ j!(ck) is an

equivalence in C.
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Proof. The implications b) ⇐⇒ c) are immediate from Lemma 3.4. As c) is a special case of
a), we are left to proving that a) implies c). Let Fun(J,C)0 be the full subcategory of Fun(J,C)
spanned by those functors F : J → C for which the canonical map colimI F ◦ f → colimJ F is
an equivalence. We check that C0 is closed under small colimits in C:

Let pJ : Fun(J, C) → C denote the J-indexed colimit functor, let f∗ : Fun(J, C) → Fun(I, C)
denote precomposition by f and let pI : Fun(J, C) → C denote the I-indexed colimit functor.
Let η : pI ◦ f∗ ⇒ pJ denote the canonical natural transformation. By definition, we have
F ∈ Fun(J,C)0 if and only if F (η) is an equivalence. Let T be a small category and

T → Fun(J,C), t → Ft

a diagram which factors through Fun(J,C)0. By assumption the top horizontal arrow in the
following commutative diagram

colimT pJ(Ft) colimT (pI ◦ f∗)(Ft)

pJ(colimT Ft) (pI ◦ f∗)(colimT Ft)

colimT η(Ft)

≃ ≃

η(colimT Ft)

is an equivalence. As the functors pI , pJ and f∗ preserve small colimits, the vertical arrows are
equivalences, as well. We conclude that the colimit colimT Ft is contained in Fun(J,C)0, too.

By Lemma 3.3 and Proposition 2.1 the category Fun(J, C) itself is the smallest full subcategory
of Fun(J, C) which is closed under small colimits and contains the object j!(ck) for all j ∈ J and
k ∈ K. If assumption c) holds then Fun(J,C)0 is another such subcategory. We conclude that
Fun(J,C) ⊆ Fun(J,C)0 so that a) holds. □

4. R-linear Quillen’s Theorem A

Theorem 4.1 (R-linear Quillen’s Theorem A). Let (R,⊗,1R) be a presentably monoidal cate-
gory and f : I → J a functor between small categories. Then the following are equivalent:

a) For any presentably R-linear category C and any functor F : J → C, the canonical map
colimI(F ◦ f) → colimJ F is an equivalence.

b) For any j ∈ J , the canonical map |Ij/| ⊗ 1R → 1R is an equivalence in R.

Proof. As R itself is presentably R-linear the implication a) ⇒ b) follows from Theorem 3.5
applied to C = R and ck = 1R. Let us assume b) holds and prove a). Let C be a presentably
R-linear category. By Theorem 3.5 it suffices to show that for all c ∈ C and j ∈ J the map
|Ij/| ⊗ c → c is an equivalence in C. Because C is presentably R-linear there exists some colimit
preserving functor −⊗ c : R → C and a natural transformation making the diagram

R

C S

⊗Rc ⊗1R

⊗c

commute. Indeed, this follows from the definition of an presentably R-linear category by passage
to left adjoints, see Lemma 3.1. We apply the functor − ⊗R c : R → C to the equivalence
|Ij/| ⊗ 1R → 1R to see that the canonical map

|Ij/| ⊗ c ≃
(
|Ij/| ⊗ 1R

)
⊗R c

≃−−→ 1R ⊗Rc ≃ c

is an equivalence as well. □
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[KNP24] Achim Krause, Thomas Nikolaus, and Phil Pützstück. Sheaves on manifolds. Available at author’s

webpage, 2024. 2, 3
[Lur09] Jacob Lurie. Higher topos theory. Princeton University Press, 2009. 3, 4


	1. Introduction
	2. Generators of Presentable Categories
	3. Specialized Quillen's Theorem A
	4. R-linear Quillen's Theorem A
	References

