VERSIONS OF QUILLEN’S THEOREM A

FABIO NEUGEBAUER

In this essay, we use the language of co-categories. For us a category is an (0o, 1)-category.
The category of co-groupoids is denoted S.

1. INTRODUCTION

Scenario 1.1. In practice, we are often confronted with the following situation: We are given
a functor F' : J — C and we desperately want to compute colimy F'. A plausible strategy is
choosing another functor f : I — J such that colim;(Ff) is computable. Then, we establish
that the canonical map colim;(F'f) — colim; F is an equivalence.

To prove the latter, I “always” employ the following theorem of Quillen’s

Theorem (Quillen’s Theorem A). Let f : I — J be a functor between small categories. The
following are equivalent:

e For any cocomplete category C and any functor F' : J — C the canonical map colimy(F f) —
colimy f is an equivalence.
e For all j € J the slice I;, := I xj J;; has contractible realization: |I;,| ~ *.

I was today’s years old, when I learned that employing Quillen Theorem A is often overkill in
Scenario 1.1. In many situations there is the following improvement:

Improvement 1.2 (R-linear Quillen’s Theorem A). Let f: I — J be a functor between small
categories and R an Ei-ring. The following are equivalent:
a) For all presentably R-linear categories C and all functors F : J — C the canonical map
colimr(F o f) — colim; F is an equivalence.
b) For all j € J the map |I;/| — * induces an isomorphism on R-homology.

In fact, we’ll deduce the R-linear Quillen theorem from the following specialized version of
Quillen’s theorem.

Theorem A (Specialized Quillen’s Theorem A, Theorem 3.5). Let f : I — J be a functor
between small categories and C a presentable category. Choose any small set {ci}rex of objects
of C, such that the functors {Map.(ck, —)}kex jointly detect equivalences. Then, the following
are equivalent:

a) For any functor F : J — C the canonical map colimy F o f — colimy F is an equivalence
in C.
b) For any j € J and k € K the canonical' map
|Ij/| R cr — cg

is an equivalence in C.

From this specialized version of Quillen’s theorem we can also proof an “enriched” version.

Date: October 5, 2025.
1|Ij/\ ® cy, is defined as the colimit of the constant functor |I;,| — C with value c.
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Definition 1.3 (Presentably R-linear categories). Let (R,®,1x) be a presentably monoidal
category. We say that a presentable category C is presentably R-linear if for any ¢ € C there is
a limit preserving functor R(c, —) : C — R together with a natural transformation making the
diagram

R

R(e,—) | Mapg (1=,~)

C —> S
Mape (¢, —)
commute.

Example 1.4. The category R is presentably R-linear, because we can take R(c, —) to be the
right adjoint of (=) @z c: R = R.

Example 1.5. An R-enriched presentable category C is presentably R-linear if the enrichment
Hom(—,—) : C°* x C — R preserves limits in the second variable.

Theorem B (R-linear Quillen’s Theorem A, Theorem 4.1). Let (R,®,1g) be a presentably
monoidal category and f : I — J a functor between small categories. Then, the following are
equivalent:

a) For any presentably R-linear category C and any functor F : J — C, the canonical map
colimy(F o f) — colimy F is an equivalence.
b) For any j € J, the canonical map |I;/| ® 1r — 1g is an equivalence in R.

Example 1.6. Let R be an Eq-ring. The R-linear version 1.2 of Quillen’s theorem A follows from
the R-linear version of Quillen’s theorem applied to the category of left R-modules R := LModg.

Example 1.7. Consider the presentably monoidal category (S<p,x,1,) of n-truncated oo-
groupoids and let f : I — J be a functor of small categories. For any j € J we have

115/l @ 1 =~ 7<n(|45/])

in S<,,. So, condition b) of the S<,-linear Quillen theorem reduces to all slices I;, being n-
connected.

2. GENERATORS OF PRESENTABLE CATEGORIES

Proposition 2.1. Let C be a presentable category and let {ck}rex be a small set of objects in
C. Then the following conditions are equivalent:

a) The corepresented functors {Map¢(ck, —) trex jointly detect equivalences in C.
b) The category C itself is the smallest full subcategory of C, which is closed under small
colimits in C and contains the objects {ck }rek -

If these conditions are satisfied, we say that the set of objects {ck}rex generates C under small
colimits.

Proof. To prove b) = a) let f be a morphism in C so that the induced morphism of mapping
spaces Map.(ck, f) is an equivalence for all £ € K. Then the full subcategory of C spanned by
all ¢ € C for which the induced map Mape (¢, f) is an equivalence is closed under colimits in C
and contains {c }rec. By assumption b) the map Map,(c, f) is an equivalence for all ¢ € C. So
f is an equivalence itself by the Yoneda Lemma.

We first recall some preliminaries before we prove the implication a) < b). Because C is
presentable, we can choose a regular cardinal « so that the objects {ck }rex are contained in the
full subcategory C" of C spanned by k-compact objects, see [KNP24, Lemma 2.1.16.]. Moreover,
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the category C" is small and closed under s-small colimits, see [KNP24, Lemma 2.1.16.] and
[Lur09, Theorem 5.5.1.1]. Let Co be the smallest full subcategory of C® which contains the
objects {c }rek and is closed under k-small colimits in C*. Because the category C" is small so
is the category Cy.

By [Lur09, Proposition 5.3.5.11] the unique s-continuous functor p : Ind,(Co) — C extending
Cop — C is fully faithful. [Lur09, Corollary 5.3.5.4] identifies objects of the full subcategory
Ind,;(Co) C P(Cp) with k-small limit preserving functors Cq® — S. Consequently, the restricted
Yoneda embedding

C = P(Co), ¢ — Mape(—,¢)

factors through a functor y : C — Indk(Cy). We show that y is right adjoint to the functor
p : Ind;(Co) — C. To this end, we fix X in C. It suffices to show that the two functors
Ind,(Co) — S°P given by

Mapr,qg, (co)(—¥(X))  and  Mape(p(—), X)

are equivalent. As both of these functors preserve rk-filtered colimits, it suffices to construct an
equivalence after precomposition with the functor Cy — Ind,(Co). To this end we employ the
Yoneda Lemma to identify the following functors CpP — S:

Mapiyg, (co) (4(=), ¥(X)) = Mapp(cy) (4(=), y(X)) = y(X) = Mape (=, X).

The upshot of this preliminary discussion is that the restricted Yoneda embedding y induces
a right adjoint of the fully faithful functor p. If condition a) is satisfied then the restricted
Yoneda embedding y is a conservative functor. It follows from the triangle identities that p is an
equivalence of categories. In particular, any object of C can be written as a k-filtered colimit of
a functor taking values in Cy. Condition b) follows now by unraveling the definition of Co. O

Examples 2.2. Here are some examples of generating sets of presentable categories:
e The category of n-truncated oco-groupoids is generated under colimits by the terminal
object.
e The category of left modules over an E;-ring R is generated under colimits by desuspen-
sions of the unit { R[—n]}nen,-

3. SPECIALIZED QUILLEN’S THEOREM A

Lemma 3.1. Let C be a cocomplete category k-compactly generated and ¢ € C an object. The
functor Mape (¢, —) corepresented by ¢ admits a left adjoint

—-®c:S—C, Xn—>colim(X—>*i>C)
sending an oco-groupoid to the constant colimit indexed by X.
Proof.
Map. (X ® ¢,d) ~ Map,(colimy ¢, d) ~ li)r(n Map(c, d) ~ Mapg(X, Map(c, d))
O

Lemma 3.2. Let C be a cocomplete category, J a small category and j € J an object. The
evaluation at j functor ev; : Fun(J,C) — C admits a left adjoint j1 : C — Fun(J,C). For any
¢ € C the functor j(c) is equivalent to the composite

J Map ;(4,—) S —Q®c c. (1)
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Proof. The evaluation functor is given by precomposition along j : {j} — J. Left Kan extension
provides a left adjoint j, := Lan; to precomposition by {j} — J. By the pointwise formula for
left Kan extension we obtain an equivalence

3i(e)()) =~ colim ({j}xJJ/ﬁ{j}ﬁc): colim  const(c) = Map,,(j,4) ® ¢,
{Yxadys Map;(4,1)

naturally in 7. O

Lemma 3.3. Suppose a small set of objects {ck }rex generates a presentable category C under
small colimits. Let J be small category. Then, the functor category Fun(J,C) is presentable.
Moreover, the small set

{ii(cx) =Map,(j,—) @ cx: jeJ ke K}
generates the functor category Fun(J, C) under small colimits Fun(J,C).

Proof. The category Fun(J,C) is presentable by [Lur09, Proposition 5.4.4.3.]. Let f be a mor-
phism in Fun(J,C) such that the induced morphism of mapping spaces Map(ji(ck), f) is an
equivalence for all j € J and k € K. Applying the adjunction from Lemma 3.2, we conclude that
the morphism Map(cy, ev;(f)) is an equivalence. Because the set of objects {c}rex generates
C, the map ev;(f) is an equivalence in C. By the pointwise criterion for equivalences in functor
categories, the morphism f is an equivalence itself. (I

Lemma 3.4. Let f: I — J be a functor between small categories. Let C be a complete category
and j € J and ¢ € C be objects. Then, the canonical map

colimy(ji(c) o f) — colimy 51(c)
is homotopic to the canonical map

|1/ @c—c.

Proof. In the factorization (1) of ji(c) the latter functor preserves colimits by Lemma 3.1. Thus,
it suffices to show that the canonical map of mapping spaces

colimy Map ;(j, —) — colimy Map;(j, —) (2)

is equivalent to |I;,| — *. The colimit of an co-groupoid valued functor is computed by inverting
the morphisms of the unstraightening. The unstraightening of Map;(j,—) : J — S is the
forgetful functor J;, — J. The unstraightening of the composite

Ii> J Map; (5,—) S

is computed as the pullback of .J;, along f. This identifies the map in Equation (2) with
|I %y J;/| = |J;/|. Finally, |J;/| is contractible because .J;, has an initial object. O

Theorem 3.5 (Specialized Quillen’s Theorem A). Let f : I — J be a functor of small categories
and C a presentable category. Choose any small set of objects {cy}rex which generate C under
small colimits. The following are equivalent:

a) For any functor F : J — C the canonical map colimy F o f — colim; F is an equivalence
in C.

b) For any j € J and k € K the map |I;/| ® cx — ¢ is an equivalence in C.

¢) For any j € J and k € K the canonical map colimy ji(ck) o f — colimy ji(ck) is an
equivalence in C.
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Proof. The implications b) <= ¢) are immediate from Lemma 3.4. As c) is a special case of
a), we are left to proving that a) implies ¢). Let Fun(J, C')g be the full subcategory of Fun(J, C')
spanned by those functors F' : J — C for which the canonical map colim; F' o f — colim; F is
an equivalence. We check that Cg is closed under small colimits in C:

Let py : Fun(J,C) — C denote the J-indexed colimit functor, let f* : Fun(J,C) — Fun(Z,C)
denote precomposition by f and let p; : Fun(J,C) — C denote the I-indexed colimit functor.
Let n : py o f* = p; denote the canonical natural transformation. By definition, we have
F € Fun(J,C)g if and only if F(n) is an equivalence. Let T be a small category and

T — Fun(J,C), t— F,

a diagram which factors through Fun(J,C)o. By assumption the top horizontal arrow in the
following commutative diagram

colimp n(Fy)

colimr py(Fy) colimy(py o f*)(F;)

nleotimr 1) (11 o £*)(colimp F})

is an equivalence. As the functors p;,ps; and f* preserve small colimits, the vertical arrows are

equivalences, as well. We conclude that the colimit colimp F} is contained in Fun(J, C')g, too.
By Lemma 3.3 and Proposition 2.1 the category Fun(J, C) itself is the smallest full subcategory

of Fun(J,C) which is closed under small colimits and contains the object ji(cy) for all j € J and

k € K. If assumption c) holds then Fun(J, C)¢ is another such subcategory. We conclude that

Fun(J,C) C Fun(J, C)o so that a) holds. O

pJ (COhmT Ft)

4. R-LINEAR QUILLEN’S THEOREM A

Theorem 4.1 (R-linear Quillen’s Theorem A). Let (R,®,1gr) be a presentably monoidal cate-
gory and f : I — J a functor between small categories. Then the following are equivalent:

a) For any presentably R-linear category C and any functor F : J — C, the canonical map
colimy(F o f) — colimy F is an equivalence.
b) For any j € J, the canonical map |I;,| ® 1gr — 1g is an equivalence in R.

Proof. As R itself is presentably R-linear the implication a) = b) follows from Theorem 3.5
applied to C = R and ¢, = 1. Let us assume b) holds and prove a). Let C be a presentably
R-linear category. By Theorem 3.5 it suffices to show that for all ¢ € C and 5 € J the map
|I;/| ® ¢ — ¢ is an equivalence in C. Because C is presentably R-linear there exists some colimit
preserving functor — ® ¢ : R — C and a natural transformation making the diagram

R
®rc . ®1r
L
<—
C 5 S

commute. Indeed, this follows from the definition of an presentably R-linear category by passage
to left adjoints, see Lemma 3.1. We apply the functor — ®% ¢ : R — C to the equivalence
|I;/| ® 1r — 1R to see that the canonical map

/| ®c~ (|Ij/\®1R) Qr ¢ — I @rc~c

is an equivalence as well. O
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