VERSIONS OF QUILLEN'S THEOREM A

FABIO NEUGEBAUER

In this essay, we use the language of ∞ -categories. For us a category is an $(\infty, 1)$ -category. The category of ∞ -groupoids is denoted S.

1. Introduction

Scenario 1.1. In practice, we are often confronted with the following situation: We are given a functor $F: J \to \mathcal{C}$ and we desperately want to compute $\operatorname{colim}_J F$. A plausible strategy is choosing another functor $f: I \to J$ such that $\operatorname{colim}_I(Ff)$ is computable. Then, we establish that the canonical map $\operatorname{colim}_I(Ff) \to \operatorname{colim}_J F$ is an equivalence.

To prove the latter, I "always" employ the following theorem of Quillen's

Theorem (Quillen's Theorem A). Let $f: I \to J$ be a functor between small categories. The following are equivalent:

- For any cocomplete category C and any functor $F: J \to C$ the canonical map $\operatorname{colim}_I(Ff) \to \operatorname{colim}_I f$ is an equivalence.
- For all $j \in J$ the slice $I_{j/} := I \times_J J_{j/}$ has contractible realization: $|I_{j/}| \simeq *$.

I was today's years old, when I learned that employing Quillen Theorem A is often overkill in Scenario 1.1. In many situations there is the following improvement:

Improvement 1.2 (R-linear Quillen's Theorem A). Let $f: I \to J$ be a functor between small categories and R an \mathbb{E}_1 -ring. The following are equivalent:

- a) For all presentably R-linear categories C and all functors $F: J \to C$ the canonical map $\operatorname{colim}_{I}(F \circ f) \to \operatorname{colim}_{I} F$ is an equivalence.
- b) For all $j \in J$ the map $|I_{i,j}| \to *$ induces an isomorphism on R-homology.

In fact, we'll deduce the R-linear Quillen theorem from the following specialized version of Quillen's theorem.

Theorem A (Specialized Quillen's Theorem A, Theorem 3.5). Let $f: I \to J$ be a functor between small categories and C a presentable category. Choose any small set $\{c_k\}_{k\in K}$ of objects of C, such that the functors $\{\operatorname{Map}_{C}(c_k, -)\}_{k\in K}$ jointly detect equivalences. Then, the following are equivalent:

- a) For any functor $F: J \to \mathcal{C}$ the canonical map $\operatorname{colim}_I F \circ f \to \operatorname{colim}_J F$ is an equivalence in \mathcal{C} .
- b) For any $j \in J$ and $k \in K$ the canonical map

$$|I_{j/}|\otimes c_k\to c_k$$

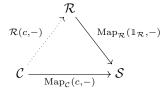
is an equivalence in C.

From this specialized version of Quillen's theorem we can also proof an "enriched" version.

Date: October 5, 2025.

 $^{{}^{1}|}I_{j}|\otimes c_{k}$ is defined as the colimit of the constant functor $|I_{j}|\to \mathcal{C}$ with value c_{k} .

Definition 1.3 (Presentably \mathcal{R} -linear categories). Let $(\mathcal{R}, \otimes, \mathbb{1}_{\mathcal{R}})$ be a presentably monoidal category. We say that a presentable category \mathcal{C} is *presentably* \mathcal{R} -linear if for any $c \in \mathcal{C}$ there is a limit preserving functor $\mathcal{R}(c, -) : \mathcal{C} \to \mathcal{R}$ together with a natural transformation making the diagram



commute.

Example 1.4. The category \mathcal{R} is presentably \mathcal{R} -linear, because we can take $\mathcal{R}(c,-)$ to be the right adjoint of $(-) \otimes_{\mathcal{R}} c : \mathcal{R} \to \mathcal{R}$.

Example 1.5. An \mathcal{R} -enriched presentable category \mathcal{C} is presentably \mathcal{R} -linear if the enrichment $\underline{\mathrm{Hom}}_{\mathcal{C}}(-,-):\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\mathcal{R}$ preserves limits in the second variable.

Theorem B (\mathcal{R} -linear Quillen's Theorem A, Theorem 4.1). Let $(\mathcal{R}, \otimes, \mathbb{1}_R)$ be a presentably monoidal category and $f: I \to J$ a functor between small categories. Then, the following are equivalent:

- a) For any presentably \mathcal{R} -linear category \mathcal{C} and any functor $F: J \to \mathcal{C}$, the canonical map $\operatorname{colim}_I(F \circ f) \to \operatorname{colim}_J F$ is an equivalence.
- b) For any $j \in J$, the canonical map $|I_{j/}| \otimes \mathbb{1}_R \to \mathbb{1}_R$ is an equivalence in \mathcal{R} .

Example 1.6. Let R be an \mathbb{E}_1 -ring. The R-linear version 1.2 of Quillen's theorem A follows from the R-linear version of Quillen's theorem applied to the category of left R-modules $R := LMod_R$.

Example 1.7. Consider the presentably monoidal category $(S_{\leq n}, \times, \mathbb{1}_n)$ of *n*-truncated ∞ -groupoids and let $f: I \to J$ be a functor of small categories. For any $j \in J$ we have

$$|I_{j/}| \otimes \mathbb{1}_n \simeq \tau_{\leq n}(|I_{j/}|)$$

in $S_{\leq n}$. So, condition b) of the $S_{\leq n}$ -linear Quillen theorem reduces to all slices $I_{j/}$ being n-connected.

2. Generators of Presentable Categories

Proposition 2.1. Let C be a presentable category and let $\{c_k\}_{k\in K}$ be a small set of objects in C. Then the following conditions are equivalent:

- a) The corepresented functors $\{\operatorname{Map}_{\mathcal{C}}(c_k, -)\}_{k \in K}$ jointly detect equivalences in \mathcal{C} .
- b) The category C itself is the smallest full subcategory of C, which is closed under small colimits in C and contains the objects $\{c_k\}_{k\in K}$.

If these conditions are satisfied, we say that the set of objects $\{c_k\}_{k\in K}$ generates C under small colimits.

Proof. To prove $b) \Rightarrow a$ let f be a morphism in \mathcal{C} so that the induced morphism of mapping spaces $\operatorname{Map}_{\mathcal{C}}(c_k, f)$ is an equivalence for all $k \in K$. Then the full subcategory of \mathcal{C} spanned by all $c \in \mathcal{C}$ for which the induced map $\operatorname{Map}_{\mathcal{C}}(c, f)$ is an equivalence is closed under colimits in \mathcal{C} and contains $\{c_k\}_{k \in \mathcal{C}}$. By assumption b) the map $\operatorname{Map}_{\mathcal{C}}(c, f)$ is an equivalence for all $c \in \mathcal{C}$. So f is an equivalence itself by the Yoneda Lemma.

We first recall some preliminaries before we prove the implication a) \Leftarrow b). Because \mathcal{C} is presentable, we can choose a regular cardinal κ so that the objects $\{c_k\}_{k\in K}$ are contained in the full subcategory \mathcal{C}^{κ} of \mathcal{C} spanned by κ -compact objects, see [KNP24, Lemma 2.1.16.]. Moreover,

the category C^{κ} is small and closed under κ -small colimits, see [KNP24, Lemma 2.1.16.] and [Lur09, Theorem 5.5.1.1]. Let C_0 be the smallest full subcategory of C^{κ} which contains the objects $\{c_k\}_{k\in K}$ and is closed under κ -small colimits in C^{κ} . Because the category C^{κ} is small so is the category C_0 .

By [Lur09, Proposition 5.3.5.11] the unique κ -continuous functor $p: \operatorname{Ind}_{\kappa}(\mathcal{C}_0) \to \mathcal{C}$ extending $\mathcal{C}_0 \hookrightarrow \mathcal{C}$ is fully faithful. [Lur09, Corollary 5.3.5.4] identifies objects of the full subcategory $\operatorname{Ind}_{\kappa}(\mathcal{C}_0) \subseteq \mathcal{P}(\mathcal{C}_0)$ with κ -small limit preserving functors $\mathcal{C}_0^{\operatorname{op}} \to \mathcal{S}$. Consequently, the restricted Yoneda embedding

$$\mathcal{C} \to \mathcal{P}(\mathcal{C}_0), \qquad c \mapsto \mathrm{Map}_{\mathcal{C}}(-,c)$$

factors through a functor $y: \mathcal{C} \to \operatorname{Ind}_{\kappa}(\mathcal{C}_0)$. We show that y is right adjoint to the functor $p: \operatorname{Ind}_{\kappa}(\mathcal{C}_0) \to \mathcal{C}$. To this end, we fix X in \mathcal{C} . It suffices to show that the two functors $\operatorname{Ind}_{\kappa}(\mathcal{C}_0) \to \mathcal{S}^{\operatorname{op}}$ given by

$$\operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathcal{C}_0)}(-, y(X))$$
 and $\operatorname{Map}_{\mathcal{C}}(p(-), X)$

are equivalent. As both of these functors preserve κ -filtered colimits, it suffices to construct an equivalence after precomposition with the functor $\mathcal{C}_0 \to \operatorname{Ind}_{\kappa}(\mathcal{C}_0)$. To this end we employ the Yoneda Lemma to identify the following functors $\mathcal{C}_0^{\operatorname{op}} \to \mathcal{S}$:

$$\operatorname{Map}_{\operatorname{Ind}_{\mathcal{C}}(\mathcal{C}_0)}(y(-),y(X)) = \operatorname{Map}_{\mathcal{C}(\mathcal{C}_0)}(y(-),y(X)) \simeq y(X) = \operatorname{Map}_{\mathcal{C}}(-,X).$$

The upshot of this preliminary discussion is that the restricted Yoneda embedding y induces a right adjoint of the fully faithful functor p. If condition a) is satisfied then the restricted Yoneda embedding y is a conservative functor. It follows from the triangle identities that p is an equivalence of categories. In particular, any object of \mathcal{C} can be written as a κ -filtered colimit of a functor taking values in \mathcal{C}_0 . Condition b) follows now by unraveling the definition of \mathcal{C}_0 .

Examples 2.2. Here are some examples of generating sets of presentable categories:

- The category of n-truncated ∞ -groupoids is generated under colimits by the terminal object.
- The category of left modules over an \mathbb{E}_1 -ring R is generated under colimits by desuspensions of the unit $\{R[-n]\}_{n\in\mathbb{N}_0}$.

3. Specialized Quillen's Theorem A

Lemma 3.1. Let \mathcal{C} be a cocomplete category κ -compactly generated and $c \in \mathcal{C}$ an object. The functor $\operatorname{Map}_{\mathcal{C}}(c, -)$ corepresented by c admits a left adjoint

$$-\otimes c: \mathcal{S} \to \mathcal{C}, \quad X \mapsto \operatorname{colim}\left(X \to * \xrightarrow{c} \mathcal{C}\right)$$

sending an ∞ -groupoid to the constant colimit indexed by X.

Proof.

$$\operatorname{Map}_{\mathcal{C}}(X \otimes c, d) \simeq \operatorname{Map}_{\mathcal{C}}(\operatorname{colim}_{X} c, d) \simeq \lim_{X} \operatorname{Map}(c, d) \simeq \operatorname{Map}_{\mathcal{S}}(X, \operatorname{Map}(c, d))$$

Lemma 3.2. Let \mathcal{C} be a cocomplete category, J a small category and $j \in J$ an object. The evaluation at j functor $\operatorname{ev}_j : \operatorname{Fun}(J,\mathcal{C}) \to \mathcal{C}$ admits a left adjoint $j_! : \mathcal{C} \to \operatorname{Fun}(J,\mathcal{C})$. For any $c \in \mathcal{C}$ the functor $j_!(c)$ is equivalent to the composite

$$J \xrightarrow{\operatorname{Map}_{J}(j,-)} \mathcal{S} \xrightarrow{-\otimes c} \mathcal{C}. \tag{1}$$

Proof. The evaluation functor is given by precomposition along $j:\{j\}\to J$. Left Kan extension provides a left adjoint $j_!:=\operatorname{Lan}_j$ to precomposition by $\{j\}\to J$. By the pointwise formula for left Kan extension we obtain an equivalence

$$j_!(c)(i) \simeq \underset{\{j\} \times_J J_{/i}}{\operatorname{colim}} \left(\{j\} \times_J J_{/i} \to \{j\} \xrightarrow{c} \mathcal{C} \right) \simeq \underset{\operatorname{Map}_J(j,i)}{\operatorname{colim}} \operatorname{const}(c) = \operatorname{Map}_J(j,i) \otimes c,$$

naturally in i.

Lemma 3.3. Suppose a small set of objects $\{c_k\}_{k\in K}$ generates a presentable category \mathcal{C} under small colimits. Let J be small category. Then, the functor category $\operatorname{Fun}(J,\mathcal{C})$ is presentable. Moreover, the small set

$$\{j_!(c_k) = \operatorname{Map}_j(j, -) \otimes c_k : j \in J, k \in K\}$$

generates the functor category $\operatorname{Fun}(J,\mathcal{C})$ under small colimits $\operatorname{Fun}(J,\mathcal{C})$.

Proof. The category Fun (J, \mathcal{C}) is presentable by [Lur09, Proposition 5.4.4.3.]. Let f be a morphism in Fun (J, \mathcal{C}) such that the induced morphism of mapping spaces Map $(j_!(c_k), f)$ is an equivalence for all $j \in J$ and $k \in K$. Applying the adjunction from Lemma 3.2, we conclude that the morphism Map $(c_k, \operatorname{ev}_j(f))$ is an equivalence. Because the set of objects $\{c_k\}_{k \in K}$ generates \mathcal{C} , the map $\operatorname{ev}_j(f)$ is an equivalence in \mathcal{C} . By the pointwise criterion for equivalences in functor categories, the morphism f is an equivalence itself.

Lemma 3.4. Let $f: I \to J$ be a functor between small categories. Let \mathcal{C} be a complete category and $j \in J$ and $c \in \mathcal{C}$ be objects. Then, the canonical map

$$\operatorname{colim}_{I}(j_{!}(c) \circ f) \to \operatorname{colim}_{J} j_{!}(c)$$

is homotopic to the canonical map

$$|I_{i/}| \otimes c \rightarrow c$$
.

Proof. In the factorization (1) of $j_!(c)$ the latter functor preserves colimits by Lemma 3.1. Thus, it suffices to show that the canonical map of mapping spaces

$$\operatorname{colim}_{I} \operatorname{Map}_{I}(j, -) \to \operatorname{colim}_{J} \operatorname{Map}_{I}(j, -) \tag{2}$$

is equivalent to $|I_{j/}| \to *$. The colimit of an ∞ -groupoid valued functor is computed by inverting the morphisms of the unstraightening. The unstraightening of $\operatorname{Map}_J(j,-): J \to \mathcal{S}$ is the forgetful functor $J_{j/} \to J$. The unstraightening of the composite

$$I \xrightarrow{f} J \xrightarrow{\operatorname{Map}_J(j,-)} \mathcal{S}$$

is computed as the pullback of $J_{j/}$ along f. This identifies the map in Equation (2) with $|I \times_J J_{j/}| \to |J_{j/}|$. Finally, $|J_{j/}|$ is contractible because $J_{j/}$ has an initial object.

Theorem 3.5 (Specialized Quillen's Theorem A). Let $f: I \to J$ be a functor of small categories and C a presentable category. Choose any small set of objects $\{c_k\}_{k\in K}$ which generate C under small colimits. The following are equivalent:

- a) For any functor $F: J \to \mathcal{C}$ the canonical map $\operatorname{colim}_I F \circ f \to \operatorname{colim}_J F$ is an equivalence in \mathcal{C} .
- b) For any $j \in J$ and $k \in K$ the map $|I_{j}| \otimes c_k \to c_k$ is an equivalence in C.
- c) For any $j \in J$ and $k \in K$ the canonical map $\operatorname{colim}_I j_!(c_k) \circ f \to \operatorname{colim}_J j_!(c_k)$ is an equivalence in C.

Proof. The implications b) \iff c) are immediate from Lemma 3.4. As c) is a special case of a), we are left to proving that a) implies c). Let $\operatorname{Fun}(J,C)_0$ be the full subcategory of $\operatorname{Fun}(J,C)$ spanned by those functors $F:J\to\mathcal{C}$ for which the canonical map $\operatorname{colim}_I F\circ f\to \operatorname{colim}_J F$ is an equivalence. We check that \mathcal{C}_0 is closed under small colimits in \mathcal{C} :

Let $p_J : \operatorname{Fun}(J,\mathcal{C}) \to \mathcal{C}$ denote the *J*-indexed colimit functor, let $f^* : \operatorname{Fun}(J,\mathcal{C}) \to \operatorname{Fun}(I,\mathcal{C})$ denote precomposition by f and let $p_I : \operatorname{Fun}(J,\mathcal{C}) \to \mathcal{C}$ denote the *I*-indexed colimit functor. Let $\eta : p_I \circ f^* \Rightarrow p_J$ denote the canonical natural transformation. By definition, we have $F \in \operatorname{Fun}(J,\mathcal{C})_0$ if and only if $F(\eta)$ is an equivalence. Let T be a small category and

$$T \to \operatorname{Fun}(J, C), \qquad t \to F_t$$

a diagram which factors through $\operatorname{Fun}(J,C)_0$. By assumption the top horizontal arrow in the following commutative diagram

$$\begin{array}{ccc} \operatorname{colim}_T p_J(F_t) & \xrightarrow{& \operatorname{colim}_T \eta(F_t) \\ & & \downarrow & & \downarrow \\ & & \downarrow & & \downarrow \\ p_J(\operatorname{colim}_T F_t) & \xrightarrow{& \eta(\operatorname{colim}_T F_t) \\ & & \downarrow & \downarrow \\ \end{array}$$

is an equivalence. As the functors p_I, p_J and f^* preserve small colimits, the vertical arrows are equivalences, as well. We conclude that the colimit colim F_t is contained in Fun $(J, C)_0$, too.

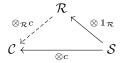
By Lemma 3.3 and Proposition 2.1 the category $\operatorname{Fun}(J,\mathcal{C})$ itself is the smallest full subcategory of $\operatorname{Fun}(J,\mathcal{C})$ which is closed under small colimits and contains the object $j_!(c_k)$ for all $j \in J$ and $k \in K$. If assumption c) holds then $\operatorname{Fun}(J,C)_0$ is another such subcategory. We conclude that $\operatorname{Fun}(J,C) \subseteq \operatorname{Fun}(J,C)_0$ so that a) holds.

4. \mathcal{R} -Linear Quillen's Theorem A

Theorem 4.1 (\mathcal{R} -linear Quillen's Theorem A). Let $(\mathcal{R}, \otimes, \mathbb{1}_R)$ be a presentably monoidal category and $f: I \to J$ a functor between small categories. Then the following are equivalent:

- a) For any presentably \mathcal{R} -linear category \mathcal{C} and any functor $F: J \to \mathcal{C}$, the canonical map $\operatorname{colim}_I(F \circ f) \to \operatorname{colim}_J F$ is an equivalence.
- b) For any $j \in J$, the canonical map $|I_{j/}| \otimes \mathbb{1}_R \to \mathbb{1}_R$ is an equivalence in \mathcal{R} .

Proof. As \mathcal{R} itself is presentably \mathcal{R} -linear the implication $a) \Rightarrow b$) follows from Theorem 3.5 applied to $\mathcal{C} = \mathcal{R}$ and $c_k = \mathbbm{1}_{\mathcal{R}}$. Let us assume b) holds and prove a). Let \mathcal{C} be a presentably \mathcal{R} -linear category. By Theorem 3.5 it suffices to show that for all $c \in \mathcal{C}$ and $j \in J$ the map $|I_{jj}| \otimes c \to c$ is an equivalence in \mathcal{C} . Because \mathcal{C} is presentably \mathcal{R} -linear there exists some colimit preserving functor $-\otimes c: \mathcal{R} \to \mathcal{C}$ and a natural transformation making the diagram



commute. Indeed, this follows from the definition of an presentably \mathcal{R} -linear category by passage to left adjoints, see Lemma 3.1. We apply the functor $-\otimes_{\mathcal{R}} c: \mathcal{R} \to \mathcal{C}$ to the equivalence $|I_{j/}| \otimes \mathbb{1}_R \to \mathbb{1}_R$ to see that the canonical map

$$|I_{j/}| \otimes c \simeq (|I_{j/}| \otimes \mathbb{1}_R) \otimes_{\mathcal{R}} c \xrightarrow{\simeq} \mathbb{1}_R \otimes_{\mathcal{R}} c \simeq c$$

is an equivalence as well.

References

[KNP24] Achim Krause, Thomas Nikolaus, and Phil Pützstück. Sheaves on manifolds. Available at author's webpage, 2024. 2, 3

 $[{\rm Lur}09]$ Jacob Lurie. ${\it Higher\ topos\ theory}.$ Princeton University Press, 2009. 3, 4